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Abstract The evolutionary forces shaping life history divergence within species are largely

unknown. Turquoise killifish display differences in lifespan among wild populations, representing an

ideal natural experiment in evolution and diversification of life history. By combining genome

sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among

wild turquoise killifish populations. We generate an improved reference genome assembly and

identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived

populations from the outer margin of the species range have small population size and accumulate

deleterious mutations in genes significantly enriched in the WNT signaling pathway,

neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due

to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide

mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the

short adult lifespan.

Introduction
The extent to which drift and selection shape life history trait evolution across species in nature is a

fundamental question in evolutionary biology. Variations in population size among natural popula-

tions is expected to affect the rate of accumulation of advantageous and slightly deleterious gene

variants, hence impacting the relative contribution of selection and drift to genetic polymorphisms

(Lanfear et al., 2014). Populations living in fragmented habitats, subjected to continuous and severe

bottlenecks, are expected to undergo dramatic population size reduction and drift, which can signifi-

cantly impact the accumulation of genetic polymorphisms in genes affecting important life history

traits (Nonaka et al., 2019). The two main evolutionary theories of aging explain aging as the conse-

quence of two fundamentally different processes. The mutation accumulation theory of aging (MA)

attributes the evolution of aging to germline-encoded genetic variants accumulating in populations

due to the age-dependent weakening of purifying selection, which becomes less efficient to remove

from the gene pool gene variants that negatively impact fitness in late life (Charlesworth, 2000).

The antagonistic pleiotropy (AP) theory of aging, instead, states that positive selection could favor

gene variants that, while overall beneficial for individual fitness, may have detrimental effects in late

life (Charlesworth, 2000; Williams, 1957). Although the two theories are not mutually exclusive and

can both in principle explain the evolution of aging-related variants across species, their genetic

traces in the genome should be distinguishable. In fact, while aging-determining gene variants

occurring due to mutation accumulation evolve as nearly-neutral variants, aging-determining gene

variants emerging via antagonistic pleiotropism evolve as positive selected variants.
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Among vertebrates, killifish represent a unique system, as they repeatedly and independently col-

onized highly fragmented habitats, characterized by cycles of rainfalls and drought (Furness, 2016).

While on the one hand intermittent precipitation and periodic drought pose strong selective pres-

sures leading to the evolution of embryonic diapause, an adaptation that enables killifish to survive

in absence of water (Cellerino et al., 2016; Hu and Brunet, 2018), on the other hand they cause

habitat and population fragmentation, promoting inbreeding and genetic drift. The co-occurrence

of strong selective pressure for early-life on the one hand and population size decline leading to

genetic drift on the other hand characterizes life history evolution in African annual killifishes

(Cui et al., 2019).

The turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate with a thoroughly

documented post-embryonic life, which, in the shortest-lived strains, amounts to four months

(Cellerino et al., 2016; Hu and Brunet, 2018; Kim et al., 2016; Blazek, 2017). Turquoise killifish

has recently emerged as a powerful new laboratory model to study experimental biology of aging

due to its short lifespan and to its wide range of aging-related changes, which include neoplasias

(Di Cicco et al., 2011), decreased regenerative capacity (Wendler et al., 2015), cellular senescence

(Ahuja et al., 2019; Valenzano et al., 2006), and loss of microbial diversity (Smith et al., 2017). At

the same time, while sharing physiological adaptations that enable embryonic diapause and rapid

sexual maturation, different wild turquoise killifish populations display differences in lifespan, both in

the wild and in captivity (Terzibasi et al., 2008; Valenzano et al., 2015; Vrtı́lek et al., 2018), mak-

ing this species an ideal evolutionary model to study the genetic basis underlying life history trait

divergence within species.

Characterization of life history traits in wild-derived laboratory strains of turquoise killifish

revealed that while different populations have similar rates of sexual maturation (Blazek, 2017), pop-

ulations from arid regions exhibit the shortest lifespans, while populations from more semi-arid

regions exhibit longer lifespans (Blazek, 2017; Terzibasi et al., 2008). Hence, speed of sexual matu-

ration and adult lifespan appear to be independent in turquoise killifish populations. The evolution-

ary mechanisms responsible for the lifespan differences among turquoise killifish populations are not

yet clearly understood. Mapping genetic loci associated with lifespan differences among turquoise

killifish populations showed that adult survival has a complex genetic architecture (Valenzano et al.,

2015; Kirschner et al., 2012). Here, combining genome sequencing and population genetics, we

investigate to what extent genomic divergence in natural turquoise killifish populations that differ in

lifespan is driven by adaptive or neutral evolution, compatible with either the antagonistic pleiotropy

(AP) theory of aging or with the mutation accumulation (MA) theory of aging, respectively.

Results

Genome assembly improvement and gene annotation
To identify the genomic mechanism that led to the evolution of differences in lifespan between natu-

ral populations of the turquoise killifish (Nothobranchius furzeri), we combined the currently available

reference genomes (Valenzano et al., 2015; Reichwald et al., 2015) into an improved reference tur-

quoise killifish genome assembly. Due to the high repeat content, genome assembly from short

reads required a highly integrated and multi-platform approach. We ran Allpaths-LG with all the

available pair-end sequences, producing a combined assembly with a contig N50 of 7.8 kb, corre-

sponding to a ~ 2 kb improvement from the previous versions. Two newly obtained 10X Genomics

linked read libraries were used to correct and link scaffolds, resulting in a scaffold N50 of 1.5 Mb,

that is a three-fold improvement from the best previous assembly. With the improved continuity, we

assigned 92.2% of assembled bases to the 19 linkage groups using two RAD-tag maps

(Valenzano et al., 2015). Gene content assessment using the BUSCO method improved “complete”

BUSCOs from 91.43% (Valenzano et al., 2015) and 94.59% (Reichwald et al., 2015) to 95.20%. We

mapped Genbank N. furzeri RefSeq RNA to the new assembly to predict gene models. The pre-

dicted gene model set is 96.1% for ‘complete’ BUSCOs. The overall size of repeated regions

(masked regions) is 1.003 Gb, accounting for 66% of the entire genome, that is 20% higher than a

previous estimate (Reichwald et al., 2009).
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Population genetics of natural turquoise killifish populations
Natural populations of turquoise killifish occur along an aridity gradient in Zimbabwe and Mozambi-

que and populations from more arid regions are associated with shorter captive lifespan

(Blazek, 2017; Terzibasi et al., 2008). A QTL study performed between short-lived and long-lived

turquoise killifish populations showed a complex genetic architecture of lifespan (measured as age

at death), with several genome-wide loci associated with lifespan differences among long-lived and

short-lived populations (Valenzano et al., 2015). To further investigate the evolutionary forces shap-

ing genetic differentiation in the loci associated with lifespan among wild turquoise killifish popula-

tions, we performed pooled whole-genome-sequencing (WGS) of killifish collected from four

sampling sites within the natural turquoise killifish species distribution, which vary in altitude, annual

precipitation and aridity (Figure 1—figure supplement 1, Supplementary file 1A). Population GNP

is located within the Gonarezhou National Park at high altitude and in an arid climate (Koeppen-Gei-

ger classification ‘BWh’, Figure 1—figure supplement 1), in a region at the outer edge of the tur-

quoise killifish distribution (Figure 1—figure supplement 1; Dorn et al., 2011; Bartáková et al.,

2013; Bartáková et al., 2015), which corresponds to the place of origin of the ‘GRZ’ laboratory

strain, which has the shortest lifespan of all laboratory strains of turquoise killifish (Terzibasi et al.,

2008; Valenzano et al., 2015). Population NF414 (MZCS 414) is located in an arid area in the center

of the Chefu river drainage in Mozambique (‘BWh’, Figure 1—figure supplement 1; Dorn et al.,

2011; Bartáková et al., 2013; Bartáková et al., 2015), and population NF303 (MZCS 303) is

located in a semi-arid area in transition to more humid climate zones in the center of the Limpopo

river drainage system (Koeppen-Geiger classification ‘BSh’, Figure 1—figure supplement

1; Dorn et al., 2011; Bartáková et al., 2013; Bartáková et al., 2015). Altitude among localities

ranges from 344 m (GNP) to 68 m (NF303, Figure 1—figure supplement 1a and

Supplementary file 1A). The temporary habitat of turquoise killifish populations differs in terms of

altitude and aridity, as the ephemeral pools at higher altitude are drained earlier and persist for

shorter time, while water bodies in habitats at lower altitude last longer (Terzibasi et al., 2008).

Population GNP is therefore named ‘dry’, population NF414 is named ‘intermediate’ and population

NF303 ‘wet’ throughout the manuscript. The populations used in this study are from localities that

belong to the same drainage system as those used in the previous QTL study and their relative posi-

tion is included in Figure 1—figure supplement 2.

High genetic differentiation and contrasting population demography in
dry and wet populations
We asked whether populations from dry, intermediate and wet areas, corresponding to shorter and

progressively longer lifespan, differ in genetic variability. We calculated genome-wide estimates of

average pairwise difference (p) and genetic diversity (qWatterson) based on 50kb-non-overlapping slid-

ing windows using PoPoolation (Kofler et al., 2011a). We found that p and qWatterson decrease from

wet to dry population (qWatterson GNP: 0.0011, qWatterson NF414: 0.0036, qWatterson NF303: 0.0072; pGNP:

0.0009, pNF414: 0.0031, and pNF303: 0.0054). Hence, dry populations have overall smaller genetic

diversity than populations from less dry regions. To infer the genetic distance between the popula-

tions, we computed the genome-wide pairwise genetic differentiation between populations using

FST (Kofler et al., 2011b). Overall, the genetic differentiation between populations ranged between

0.14 and 0.26 and was the highest between the more geographically distant population GNP (dry)

and population NF303 (wet) (Figure 1a).

Next, we inferred the demographic history of the populations using pairwise sequentially Markov-

ian coalescent (PSMC) by resequencing at high-coverage single individuals for each population

(Schiffels and Durbin, 2014). The population GNP (dry) experienced a strong population decline

starting approximately 150 k generations ago, a result consistent for both the sequenced individuals

from the two sampling sites (GNP-G1-3 and GNP-G4, Figure 1a). In contrast to the demographic

history in GNP, we found indications for recent population expansions in populations from the cen-

ter of the Chefu and Limpopo basins clades. Analysis of population NF414 (intermediate)

(Figure 1a, NF414-Y and NF414-R) and NF303 (wet) (Figure 1a, blue line) shows population expan-

sion until recent time (~50 k generations ago). To infer the effective population size (Ne) of the popu-

lations, we used the published mutational rate of 2.6321e�9 per base pair per generation for

Nothobranchius, computed via dated phylogeny and qWatterson (Cui et al., 2019). In line with the
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decrease in genetic diversity from wet to dry population, we found a decrease in Ne estimates

(107221.8, 338849.48 and 683693.25 for GNP, NF414 and NF303, respectively; Figure 1b). Hence,

our findings show that dry populations from the outer edge of the species distribution show lower

genetic diversity and smaller effective population size compared to population from intermediate

and more wet regions.

Figure 1. Demography and natural occurrence of turquoise killifish populations. (a) Inferred ancestral effective population size (Ne) (using PSMC’) on

y-axis and past generations on x-axis in GNP (red, orange), NF414 (black, grey) and NF303 (blue). Inset: unrooted neighbor joining tree based on

pairwise genetic differentiation (FST) values. (b) Geographical locations of sampled natural population of turquoise killifish (Nothobranchius furzeri). The

area of the colored circles represents the estimated effective population size (Ne) based on qWatterson. (c) Natural environment of turquoise killifish and

schematic of the annual life cycle. Figure 1 was partly made with Biorender.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Altitude, climate classification and genetic differentiation of studied samples.

Figure supplement 2. Map positions of the populations used in this study and of those used in the QTL study (Valenzano et al., 2015).
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Genetic differentiation among turquoise killifish populations
To test whether regions underlying longevity QTL in turquoise killifish (Valenzano et al., 2015;

Kirschner et al., 2012) display a genetic signature for positive or purifying selection in these wild

populations, we took advantage of the improved turquoise killifish genome assembly and the newly

sequenced wild turquoise killifish populations (Figure 2). The strongest QTL for lifespan differences

among long-lived and short-lived populations mapped on the sex chromosome (Valenzano et al.,

2015; Kirschner et al., 2012), in proximity to the sex determining locus (Valenzano et al., 2015).

To identify a genomic signature of strong selection, we performed an outlier approach based on

the pairwise genetic differentiation index (FST). To find highly differentiated regions that may under-

lie positive selection in natural turquoise killifish populations, we scanned for regions with elevated

genetic differentiation between pairs of populations, that is exceeding the 0.995 quantile of Z-trans-

formed non-overlapping 50 kb sliding windows of FST. To find regions under purifying selection, we

scanned for regions with lowered genetic differentiation among populations, that is below the 0.005

quantile of Z-transformed non-overlapping 50 kb sliding windows of FST (Supplementary file 1G).

Figure 2. Genomic regions of high and low genetic divergence between pairs of turquoise killifish populations. Left) Genomic regions with high or low

genetic differentiation between turquoise killifish populations identified with an FST outlier approach. Z-transformed FST values of all pairwise

comparisons in solid lines, with ‘NF303vsNF414’ in yellow, ‘NF303vsGNP’ in blue, and ‘NF414vsGNP’ in green. The significance thresholds of upper and

lower 5‰ are shown as dotted lines with same color coding. Center) Circos plot of Z-transformed FST values between all pairwise comparisons with

‘NF303vsNF414’ in the inner circle (yellow), ‘NF414vsGNP’ in the middle circle (green), and ‘NF303vsGNP’ in the outer circle (blue). Right) Pairwise

genetic differentiation based on FST in the four main clusters associated with lifespan (QTL from Valenzano et al., 2015).
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The outlier approach did not reveal clear signatures of positive or purifying selection based on

genetic differentiation in the four main chromosomal clusters associated with lifespan in experimen-

tal strains of turquoise killifish (Figure 2).

We then analyzed genomic regions carrying signatures of positive and purifying selection in the

natural turquoise killifish populations irrespective of the QTL regions (Figure 2). The FST outlier

approach led to the identification of several potential regions under strong selection between popu-

lations, in particular between the intermediate and wet populations (Supplementary file 1D) and

only two between the dry and wet populations (Supplementary file 1E). Genes significantly different

and within regions of larger genetic differentiation based on Z-transformed non-overlapping sliding

windows of FST were located on chromosomes 6 and 10. The region on chromosome six includes the

gene slc8a1, which contains mutations with significant difference in allele frequencies between the

wet and intermediate population (Fisher’s exact test implemented in PoPoolation; adjusted p

value < 0.001). The region on chromosome 10 contains four genes: XM_015941868, XM_015941869,

lss and hibch. All genes under the major FST peak on chromosome 10 showed significant difference

in allele frequencies between the intermediate and wet population (Fisher’s exact test; adjusted p

value < 0.001) and additionally, hibch had significantly different allele frequencies between the dry

and wet population (Fisher’s exact test; adjusted p value < 0.001).

Age-specific changes in genes with sequence divergence between
populations
Genes under FST peaks between populations that differ in lifespan, are not necessarily causally

involved in lifespan differences between populations, as sequence differences could segregate in

populations due to population structure and drift. However, to test whether the genes located in

genomic regions that are significantly divergent between populations could be functionally involved

in age-related phenotypes, we investigated whether gene expression in these genes varied as a

function of age. Analyzing available turquoise killifish longitudinal RNA-Seq datasets generated in

liver, brain and skin (Baumgart et al., 2017), we found that hibch, lss and slc8a1 are differentially

expressed between adult and old killifish (Supplementary file 1J, adjusted p value < 0.01). hibch,

lss and slc8a1 are involved in amino acid metabolism (Ferdinandusse et al., 2013), biosynthesis of

cholesterol (Huff and Telford, 2005), and proton-mediated accelerated aging (Osanai et al., 2018),

respectively. Gene XM_015956265 (ZBTB14) is the only gene that is an FST outlier and that is differ-

entially expressed in adult vs. old individuals between at least two populations in all tissues (liver,

brain and skin). XM_015956265 encodes a transcriptional modulator with ubiquitous functions, rang-

ing from activation of dopamine transporter to repression of myc, fmr1 and thymidine kinase pro-

moters (Orlov et al., 2007). However, although genomic regions that have sequence divergence

between turquoise killifish populations contain genes that are differentially expressed during aging

in different tissues, whether any of these genes are causally involved in modulating aging-related

changes between turquoise killifish wild populations still remains to be assessed. We could not find

enrichment of significant differentially expressed genes within the FST outlier regions (Fisher’s exact

test p value > 0.05).

Genomic regions of low genetic differentiation among populations
Based on the outlier approach, we found two genomic regions with low genetic differentiation

between all pairs of populations, suggesting strong purifying selection. The first region is located on

the sex chromosome and contains the putative sex determining gene gdf6 (Reichwald et al., 2015),

which is hence conserved among these populations. This same region also contains sybu, a mater-

nal-effect gene associated with the establishment of embryo polarity (Nojima et al., 2010). The sec-

ond region under low genetic differentiation is located on chromosome nine and harbors the genes

XM_015965812 (abi2-like), cnot11 and lcp1, which are involved in phagocytosis (Ulvila et al., 2011),

mRNA degradation (Mauxion et al., 2013) and cell motility (Kell et al., 2018), respectively. Signa-

tures of low and high genetic differentiation between populations can be the result of purifying or

positive selection. However, balancing selection, a mechanism that could maintain polymorphism

above the expected genetic diversity, could also in part result in genetic differentiation

(Brandt et al., 2018). To account for balancing selection, we compared the pairwise genetic
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diversity (p) among populations and we could not find signatures of elevated genetic diversity within

the investigated regions under strong selection.

Hence, we could not find a clear evidence of positive or purifying selection in correspondence

with the survival QTL previously identified, suggesting that genomic regions associated with natural

lifespan differences may have not evolved due to positive selection or have being maintained under

purifying selection. However, we cannot exclude that we could not detect positive selection at the

QTL regions due to statistical power or that the populations used in this study and those used for

the QTL analysis had a different genetic architecture of lifespan.

Evolutionary origin of the sex chromosome
Since we found reduced genetic differentiation among populations in the chromosomal region con-

taining the putative sex-determining gene in the sex chromosome, we used synteny analysis and the

new genome assembly to investigate the genomic events that led to evolution of this chromosomal

region (Figure 3). We found that the structure of the turquoise killifish sex chromosome is compati-

ble with a chromosomal translocation within an ancestral chromosome and a fusion event between

two chromosomes. The translocation event within an ancestral chromosome corresponding to

medaka´s chromosome 16 and platyfish´s linkage group three led to a repositioning of a chromo-

somal region containing the putative sex-determining gene gdf6 (Figure 3b). The fusion of the trans-

located chromosome with a chromosome corresponding to medaka´s chromosome eight and

platyfish´s linkage group 16, possibly led to the origin of turquoise killifish’s sex chromosome. We

could hence reconstruct a model for the origin of the turquoise killifish sex chromosome (Figure 3c),

which parsimoniously places a translocation event before a fusion event. The occurrence of two

major chromosomal rearrangements could have then contributed to suppressing recombination

around the sex-determining region (Valenzano et al., 2015; Valenzano et al., 2009).

Relaxed selection in turquoise killifish populations
Since we could not identify specific signatures of genetic differentiation in the genomic regions asso-

ciated with longevity from previous QTL mapping, we asked whether other evolutionary forces than

directional selection may underlie differences in survival among wild turquoise killifish populations.

The difference in the recent and past demography between populations (Figure 1) led us to ask

whether demography could have led to evolutionary changes on genome-wide scale between natu-

ral populations. For each population, we calculated the fraction of substitutions driven to fixation by

positive selection since divergence from the outgroup species Nothobranchius orthonotus (NOR)

using the asymptotic McDonald-Kreitman a (Messer and Petrov, 2013). The original McDonald-

Kreitman a (which ranges from – ¥ to 1) was designed to calculated the rate of adaptation by com-

paring the polymorphisms (within species) and divergence (between species) at neutral and func-

tional sites (McDonald and Kreitman, 1991). While McDonald-Kreitman a = 0 indicates neutrality,

larger and positive values of a mean that a given population has an elevated proportion of genetic

variants driven by natural selection, while negative values of a can be an indication of deleterious

variants. The asymptotic McDonald-Kreitman a accounts for a range of derived allele frequencies,

enabling to identify slightly deleterious mutations as those segregating at lower derived allele fre-

quencies (Messer and Petrov, 2013). Variants at low derived allele frequency are either neutral (if

they were beneficial they would have higher frequency) or are slightly deleterious. Hence, negative

McDonald-Kreitman a values at low derived allele frequency bins likely reflect slightly deleterious

gene variants. Additionally, negative a values at intermediate to higher frequency bins may indicate

drift of deleterious variants. We set out to adopt this method to assess the genetic variants for each

population, compared to two different outgroup species.

Using Nothobranchius orthonotus (NOR) as an outgroup, we inferred the fraction of positive

selection by pooling all coding sites (Figure 4a). SNPs were called with the program SNAPE

(Raineri et al., 2012), which specifically deals with pooled sequencing. We only included SNPs with

a derived frequency between 0.05–0.95 and performed stringent filtering. The asymptotic McDo-

nald-Kreitman a ranged from �0.21 to �0.01 in comparison to the very closely related sister species

N. orthonotus, confirming limited genome-wide positive selection since divergence from N. orthono-

tus (Figure 4a). The population GNP, located in an arid region at higher altitude and associated with

the shortest recorded lifespan, shows the lowest asymptotic McDonald-Kreitman a, as well as lower
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Figure 3. Synteny and sex chromosome evolution in turquoise killifish. (a) Synteny circos plots based on 1-to-1 orthologous gene location between the

new turquoise killifish assembly (black chromosomes) and platyfish (Xiphophorus maculatus, colored chromosomes, left circos plot) and between the

new turquoise killifish assembly (black chromosomes) and medaka (Oryzias latipes, colored chromosomes, right circos plot). Orthologous genes in

concordant order are visualized as one syntenic block. Synteny regions are connected via color-coded ribbons, based on their chromosomal location in

platyfish or medaka. If the direction of the syntenic sequence is inverted compared to the compared species, the ribbon is twisted. Outer data plot

shows –log(q-value) of survival quantitative trait loci (QTL, ordinate value between 0 and 3.5, every value above 3.5 is visualized at 3.5 [Valenzano et al.,

2015]) and the inner data plot shows –log(q-value) of the sex QTL (ordinate value between 0 and 3.5, every value above 3.5 is visualized at 3.5). Boxes

between the two circos plots show genes within the peak regions of the four highest –log(q-value) of survival QTL on independent chromosomes (red

box) and the highest association to sex (black box). (b) High resolution synteny map between the sex-chromosome of the turquoise killifish (Chr3) with

platyfish chromosome 16 and 3 in the upper plot, and between the turquoise killifish and medaka chromosome 8 and 16 (lower plot). The middle plot

shows the QTLs for survival and sex along the turquoise killifish sex chromosome. (c) Model of sex chromosome evolution in the turquoise killifish. A

translocation event within one ancestral autosome led to the emergence of a chromosomal region harboring a new sex-determining-gene (SDG). The

fusion of a second autosome led to the formation of the current structure of the turquoise killifish sex chromosome.
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Figure 4. Genome-wide signatures of natural and relaxed selection in turquoise killifish populations. Asymptotic McDonald-Kreitman alpha (MK a)

analysis based on derived frequency bins using as outgroups (a) Nothobranchius orthonotus and (b) Nothobranchius rachovii. Population GNP is shown

in red, NF414 in black, and NF303 in blue. (c) Proportion of non-synonymous SNPs binned in allele frequencies of non-reference (alternative) alleles for

GNP (red), NF414 (black) and NF303 (blue). (d) Negative distribution of fitness effects of populations GNP (red), NF414 (black) and NF303 (blue) with

cumulative proportion of deleterious SNPs on y-axis and the compound measure of 4Nes on x-axis. (e) Proportion of different effect types of SNPs in

coding sequences of all populations. The effect on amino acid sequence for each genetic variant is represented by colors (legend). Significance is

based on ratio between synonymous effects to non-synonymous effects (significance based on Chi-square test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page
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McDonald-Kreitman a values throughout all derived frequency bins, potentially suggesting a higher

load of slightly deleterious mutations segregating in this population (Figure 4a). Using as an out-

group species another annual killifish species, Nothobranchius rachovii (NRC), we confirmed the low-

est asymptotic McDonald-Kreitman a value in the dry population GNP (Figure 4b). Additionally,

using Nothobranchius rachovii (NRC) as outgroup species, the asymptotic McDonald-Kreitman a

ranged from �0.06 to 0.23 among populations, indicating that more alleles were driven to fixation

by positive selection in the ancestral lineage leading to Nothobranchius furzeri and Nothobranchius

orthonotus. In particular, the wet population NF303 had the highest asymptotic McDonald-Kreitman

a value (Figure 4b). Using both N. orthonotus and N. rachovii as outgroups, we found that the dry

GNP population had the lowest McDonald-Kreitman a values at the low derived frequency bins,

potentially consistent with a genome-wide accumulation of slightly deleterious mutations in these

isolated populations.

Estimating the distribution of fitness effect across populations
To directly estimate the fitness effect of gene variants associated with each population, we analyzed

population-specific genetic polymorphisms to assign mutations as beneficial, neutral or detrimental,

and determine the distribution of fitness effect (DFE) (Tataru et al., 2017) of new mutations. Consis-

tently with the overall lower McDonald-Kreitman a values throughout all derived frequency bins, we

found more new mutations assigned as the slightly deleterious category in the dry GNP population,

compared to the other two populations (indicated by the higher number of deleterious SNPs in

proximity to 4NeS ~ 0 in the GNP population, Figure 4d, Supplementary file 1H). To independently

validate our findings, we ran a simulation using SLiM3, which recapitulated the population diver-

gence from an ancestral population, followed with diverging population size as inferred from the

PSMC’ analysis (Figure 4—figure supplement 1). Analyzing the distribution of fitness effect in these

simulated populations, we confirmed that populations with smaller effective population size have a

higher proportion of new slightly deleterious variants, compared to larger populations, which have

relatively more newly arising gene variants that are highly deleterious, indicating that purifying selec-

tion in the large population is more efficient in removing mutations with deleterious effects. To fur-

ther infer the effect of the putative deleterious mutations on protein function, we used the new

turquoise killifish genome assembly as a reference and adopted an approach that, by analyzing

sequence polymorphism among populations, predicts functional consequences at the protein level

(Cingolani et al., 2012). We found that the proportion of mutations causing a change in protein

function is significantly larger in the GNP population compared to populations NF414 and NF303

(Chi-square test: PGNP-NF303 <1.87e-119, PGNP-NF414 <4.96e-57, PNF303-NF414< 3.51e-35, Figure 4e).

Additionally, the mutations with predicted deleterious effects on protein function reached also

higher frequencies in the dry population GNP (Figure 4c).

Distribution of mutations at conserved sites
To further investigate the impact of mutations on protein function, we calculated the Consurf

(Pupko et al., 2002; Mayrose et al., 2004; Glaser et al., 2003; Ashkenazy et al., 2016) score,

which determines the evolutionary constraint on an amino acid, based on sequence conservation.

Mutations at amino acid positions with high Consurf score (i.e. otherwise highly conserved) are con-

sidered to be more deleterious. We found that the dry population GNP had a significantly higher

mean Consurf score for mutations at non-synonymous sites in frequency bins from 5–20% up to 40–

60%, compared to populations NF414 (intermediate) and NF303 (wet) (Figure 4—figure supple-

ment 2). The mutations in the dry GNP population had significantly higher Consurf scores than the

other populations using both outgroup species N. orthonotus and N. rachovii (Figure S3). Upon

exclusion of potential mutations at neighboring sites (CMD: codons with multiple differences), CpG

hypermutation and genes containing mutations with highly detrimental effect on protein function

based on SnpEFF analysis, the dry population GNP had higher mean Consurf score at the low

Figure 4 continued

Figure supplement 1. Simulated models with the inferred negative distribution of fitness effects.

Figure supplement 2. Mean Consurf score per variant based on derived frequency bins.
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frequency bin (Figure 4—figure supplement 2, Supplementary file 1K-L). To note, we also found a

significantly higher average Consurf score at synonymous sites in GNP at low derived frequencies

(Figure 4—figure supplement 1, Supplementary file 1K-L), possibly suggestive of an overall higher

mutational rate in GNP.

Relaxation of selection in age-related disease pathways
To further test whether populations from dry environments accumulated a higher load of deleterious

gene variants, we computed the gene-wise direction of selection (DoS) (Stoletzki and Eyre-Walker,

2011) index, which measures the strength of selection based on the count of mutations in non-syn-

onymous and synonymous sites. Indeed, we found support to the hypothesis that the dry, short-lived

population GNP has significantly more slightly deleterious mutations segregating in the population,

compared to the populations NF414 and NF303 (Figure 5a, Median NOR: GNP: �0.17, NF414:

�0.02, NF303: �0.01; Median NRC: GNP: �0.14, NF414: 0.00, NF303: 0.00; Wilcoxon rank sum

Figure 5. Pathway enrichment in genes under adaptive and neutral evolution in turquoise killifish populations. (a) Distribution of direction of selection

(DoS) represented with median of distribution for population GNP (red), NF414 (grey) and NF303 (blue). Left panel shows DoS distribution computed

using Nothobranchius orthonotus as outgroup and right panel shows DoS distribution computed using Nothobranchius rachovii as outgroup.

Significance based on Wilcoxon-Rank-Sum test. (b) Pathway over-representation analysis of genes below the 2.5% level of gene-wise DoS values are

shown with red background and above the 97.5% level of gene-wise DoS values are shown with green background. Only pathway terms with

significance level of FDR corrected q-value <0.05 are shown (in -log(q-value)). Terms enriched in population GNP have red dots, enriched in population

NF414 have black dots, and enriched in population NF303 have blue dots, respectively.

Willemsen et al. eLife 2020;9:e55794. DOI: https://doi.org/10.7554/eLife.55794 11 of 26

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.55794


test: NOR: PGNPNF303 <2.21e-105, PGNP-NF414 <1.19e-76, PNF303-NF414< 1.39e-06; NRC: PGNP-

NF303 <4.61e-179, PGNP-NF414 <1.42e-100, PNF303-NF414< 5.96e-22), indicating that purifying selection

is relaxed in GNP. We calculated DoS in all populations using independently as outgroup species N.

orthonotus and N. rachovii (Figure 5a).

To assess whether specific biological pathways were significantly more impacted by the accumula-

tion of slightly deleterious mutations, we performed pathway overrepresentation analysis. We found

a significant overrepresentation in the lower 2.5th DoS quantile (i.e. genes under relaxation of selec-

tion) in the GNP population for pathways associated with age-related diseases, including gastric can-

cer, breast cancer, neurodegenerative disease, mTOR signaling and WNT signaling (q-value <0.05,

Figure 5b, Supplementary file 1I). Overall, relaxed selection in the dry GNP population affected

accumulation of deleterious mutations in age-related and in the WNT pathway. Analyzing the path-

ways affected by genes within the upper 2.5th DoS values – corresponding to genes undergoing

adaptive evolution – we found a significant enrichment for mitochondrial pathways – potentially

compensatory (Cui et al., 2019) – in population NF303 (Figure 5b, Supplementary file 1I). Overall,

our results show that differences in effective population size among wild turquoise killifish are associ-

ated with an extensive relaxation of purifying selection, significantly affecting genes involved in age-

related diseases, and which could have cumulatively contributed to reducing individual survival.

Discussion
The turquoise killifish (Nothobranchius furzeri) is the shortest-lived known vertebrate and while its

natural populations show similar timing for sexual maturation, exhibit differences in lifespan along a

cline of altitude and aridity in south-eastern Africa (Blazek, 2017; Terzibasi et al., 2008). Here we

generate an improved genome assembly (NFZ v2.0) in turquoise killifish (Nothobranchius furzeri) and

study the evolutionary forces shaping genome evolution among natural populations.

Using the new turquoise killifish genome assembly and synteny analysis with medaka and platy-

fish, we reconstructed the origin of the turquoise killifish sex chromosome, which appears to have

evolved through two independent chromosomal events, that is a translocation and a fusion event.

Using the new genome assembly and pooled sequencing of natural turquoise killifish populations,

we found that genetic differentiation among populations of the short-lived turquoise killifish is con-

sistent with differences in demographic constraints. While we found that strong purifying selection

maintains low genetic diversity among populations at genomic regions underlying key species-spe-

cific traits, such as in proximity to the sex-determining region, demography and genetic drift largely

shape genome evolution, leading to relaxation of selection and the accumulation of deleterious

mutations. We showed that isolated populations from an arid region, dwelling at higher altitude and

characterized by shorter lifespan, experienced extensive population bottlenecking and a sharp

decline in effective population size. Populations from dryer regions at higher altitudes experience

genetic isolation and possibly steady decline in population size due to limited incoming gene flow

and possibly more severe bottlenecks due to recent founder effect. However, populations from

more wet regions likely undergo extensive gene flow, maintaining larger population size. We found

that relaxation of selection in more drifted populations significantly affected the accumulation of del-

eterious gene variants in pathways associated with neurodegenerative diseases and WNT-signaling

(Figure 5). While simple traits, such as male tail color and sex have a simple genetic architecture

among turquoise killifish populations (Valenzano et al., 2015; Valenzano et al., 2009), we find that

the complex genetic architecture of lifespan differences among killifish populations

(Valenzano et al., 2015) is entirely compatible with genome-wide relaxation of selection. Addition-

ally, the absence of genomic signature of positive selection in genomic regions underlying survival

QTL in killifish suggest that, rather than directional selection, the neutral accumulation of deleterious

mutations may be the evolutionary mechanism underlying survival differences among turquoise killi-

fish populations, in line with the mutation accumulation theory of aging. The antagonistic pleiotropy

theory of aging states that positive selection could lead to the fixation of gene variants that, while

overall beneficial for fitness, could reduce survival and reproductive capacity in late life (Wil-

liams, 1957). However, the lack of genomic signatures of positive selection at the genomic regions

underlying survival QTL in turquoise killifish rather suggests that the accumulation of deleterious

mutations due to neutral drift may have played a key role in shaping genome and phenotype differ-

ences among natural turquoise killifish populations. One of the deductions of the antagonistic
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pleiotropy theory is that a reduction in speed of maturation should be associated with increased life-

span (Williams, 1957). However, different wild populations of turquoise killifish have similar time to

sexual maturation and yet different lifespan (Blazek, 2017). Hence, the uncoupling of age of sexual

maturation from adult lifespan in different turquoise killifish populations is more compatible with the

mutation accumulation theory of aging. However, although we did not find evidence for it, our

results do not exclude a priori the possibility that genes under strong selection may in part contrib-

ute to lifespan differences among different turquoise killifish populations, hence acting compatibly

with the antagonistic pleiotropy theory of aging. However, historical fluctuations in the size of natural

turquoise killifish populations, especially in isolated populations living in more arid and elevated hab-

itats, weakened the strength of natural selection, ultimately contributing to increased load of delete-

rious gene variants, preferentially in genes associated with aging-related diseases and in the WNT

pathway. We hypothesize that small effective population size leads to the accumulation of aging-

causing mutations that together contribute to the genetic architecture of lifespan. Overall, our find-

ings highlight the role of demographic constraints in shaping life history within species.

Materials and methods

Merging and improvement of the turquoise killifish genome assembly
(BioProject ID: PRJNA599375)
10x genomics read clouds
A single GRZ male individual was sacrificed with MS222 (Sigma-Aldrich, Steinheim, Germany). Blood

was drawn from the heart and high molecular weight DNA was isolated with Qiagen MagAttract kit

following manufacturer’s instructions. Gemcode v2 DNA library generation was performed by Novo-

gene (Beijing, China). Briefly, a proportion of the sample was run on a pulse field agarose gel to con-

firm high molecularity >100 kb. Based on a genome size estimate of 1.54 Gb (half of human

genome), 0.6 ng of DNA was used to construct 2 Gemcode libraries, sequenced on two HiSeq X

lanes to obtain a raw coverage of approximately 60X each. The reported input molecular length by

SuperNova (Weisenfeld et al., 2017) was 118 kb for library 1 and 60.73 kb for library 2. Both librar-

ies were used to correct and scaffold the Allpath-LG assembly (see below), and library one was also

de novo assembled with the SuperNova assembler v.2 with default parameters. The SuperNova

assembly totaled 802.6 Mb, with a contig N50 of 19.65 kb, scaffolded into 6.78 thousand scaffolds

with an N50 of 3.83 Mb. Despite high continuity, however, the BUSCO (Simão et al., 2015) metrics

are much lower than the Allpath-LG assemblies.

Nanopore long reads
DNA was extracted from a single GRZ male individual’s muscle tissue by grinding in liquid nitrogen

followed by phenol-chloroform extraction (Sigma). The rapid sequencing kit (SQK-RAD004) and the

ligation kit (SQK-LSK108) were sued to prepare six libraries and were sequenced on 6 MinION flow

cells (R9.4.1). These runs yielded a total of 3.3 Gb of sequences after trimming and correction by

HALC (Bao and Lan, 2017). For correction, Allpath-LG contigs (see below) and short reads from the

10X genomic run were used.

Allpath-LG assembly
Two independent short read datasets were previous collected for the GRZ strain of Nothobranchius

furzeri. Allpath-LG (Gnerre et al., 2011) was used on the pooled datasets. Together, 4 Illumina short

read pair-end libraries with a fragment size distribution from 158 bp to 179 bp were used to con-

struct the contigs (sequence coverage 191.9X, physical coverage 153.5X), and 22 pair-end and mate

pair libraries distributed at 92 bp, 135 bp, 141 bp, 176 bp, 267 bp, 2 kb, 3 kb 5 kb and 10 kb were

used for the scaffolding step (sequence coverage 135.7X, physical coverage 453.8X). The published

BAC library ends (Reichwald et al., 2015) with an insert size of 112 kb were also included in the ALL-

Paths-LG run (physical coverage 0.6X). The resulting assembly has a total contig length of

823,583,106 bp distributed in 151,307 contigs > 1 kb, with an N50 of 7.8 kb. The total scaffold

length is 943,793,727 bp distributed in 7830 scaffolds with an N50 of 421 kb (with gaps). The result-

ing assembly was further scaffolded by ARCS v1.0 (Coombe et al., 2018) + LINKS v1.8.5

(Warren et al., 2015) with the following parameters: arcs -e 50000 c 3 r 0.05 s 98 and LINKS -m -d
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4000 k 20 -e 0.1 l 3 -a 0.3 t 2 -o 0 -z 500 r -p 0.001 -x 0. This increased the scaffold N50 to 1.527

Mb. Next, scaffolds were assigned to the RAD-tag linkage map (Valenzano et al., 2015) collected

from a previous study with Allmaps (Tang et al., 2015), using equal weight for the two independent

mapping crosses. This procedure assigned 90.6% of the assembled bases in 1131 scaffolds to 19

linkage groups, in which 76.6% can be oriented. Misassemblies were corrected with the 10X geno-

mic read cloud. Read clouds were mapped to the preliminary assembly with longranger v2.1.6 using

default parameters, and a custom script was used to scan for sudden drops in barcode shares along

the assembled linkage groups. The scaffolds were broken at the nearest gap of the drop in 10x barc-

odes. The same ARCS + LINKS pipeline was again run on the broken scaffolds, increasing the scaf-

fold N50 to 1.823 Mb. Next, BESST_RNA (https://github.com/ksahlin/BESST_RNA) was used to

further scaffold the assembly with RNASeq libraries, Allmaps was again used to assign the fixed scaf-

folds back to linkage groups, increasing the assignable bases to 92.2% (879Mb) with 80.3% (765Mb)

with determined orientation. The assembly was again broken with longranger and reassigned to LG

with Allmaps, and the scaffolds were further partitioned to linkage groups due to linkage of some

left-over scaffolds with an assigned scaffold. Each partitioned scaffold groups were subjected to the

ARCS + LINKS pipeline again, to constraint the previously unassigned scaffolds onto the same link-

age group. Allmaps was run again on the improved scaffolds, resulting in 94.5% (903.4Mb) of bases

assigned and 89.1% (852Mb) of bases oriented. Longranger was run again, visually checked and

compared with the RADtag markers. Eleven mis-oriented positions were identified and corrected.

Gaps were further patched by GMCloser (Kosugi et al., 2015) with ~2X of nanopore long reads cor-

rected by HALC using BGI500 short PE reads with the following parameters: gmcloser –blast –

long_read –lr_covX2XlX100X-iX466X-dX13Xmin_subconX1Xmin_gap_sizeX10 –itera-

teX2 –mqX1Xc. The corrected long reads not mapped by GMCloser were assembled by CANU

(Koren et al., 2017) into 7.9 Mb of sequences, which are likely unassigned repeats.

Meta assembly
Five assemblies were integrated by MetAssembler (Wences and Schatz, 2015) in the following

order (ranked by BUSCO scores) using a 20 kb mate pair library: 1) The improved Allpaths-LG

assembly assigned to linkage groups produced in this study, 2) A previously published assembly

with Allpaths-LG and optical map (Reichwald et al., 2015) 3) A previously published assembly using

SGA (Valenzano et al., 2015), 4) The SuperNova assembly with only 10x Genomic reads and 5)

Unassigned nanopore contigs from CANU. The final assembly NFZ v2.0 has 911.5 Mb of scaffolds

assigned to linkage groups. Unassigned scaffolds summed up to 142.2 Mb, yielding a total assembly

length of 1053.7 Mb, approximately 2/3 of the total genome size of 1.53 Gb. The final assembly has

95.2% complete and 2.24% missing BUSCOs.

Mapping of NCBI Genbank gene annotations
RefSeq mRNAs for the GRZ strain (PRJNA314891, PRJEB5837) were downloaded from GenBank

(Sayers et al., 2019), and aligned to the assembly with Exonerate (Slater and Birney, 2005). The

RefSeq mRNAs have a BUSCO score of 98.0% complete, 0.9% missing. The mapped gene models

resulted in a BUSCO score of 96.1% complete, 2.1% missing.

Pseudogenome assembly generation
The pseudogenomes for Nothobranchius orthonotus and Nothobranchius rachovii were generated

from sequencing data and the same method used in Cui et al., 2019. Briefly, the sequencing data

were mapped to the NFZ v2.0 reference genome by BWA-mem v0.7.12 in PE mode (Li, 2013;

Li and Durbin, 2010). PCR duplicates were marked with MarkDuplicates tool in the Picard (version

1.119, http://broadinstitute.github.io/picard/) package. Reads were realigned around INDELs with

the IndelRealigner tool in GATK v3.4.46 (McKenna et al., 2010). Variants were called with SAM-

TOOLS v1.2 (Li et al., 2009) mpileup command, requiring a minimal mapping quality of 20 and a

minimal base quality of 25. A pseudogenome assembly was generated by substituting reference

bases with the alternative base in the reads. Uncovered regions, INDELs and sites with >2 alleles

were masked as unknown ‘N’. The allele with more supporting reads was chosen at biallelic sites.
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Mapping of longevity and sex quantitative trait loci
The quantitative trait loci (QTL) markers published in Valenzano et al., 2015 were directly provided

by Dario Riccardo Valenzano. In order to map the markers associated with longevity and sex, a refer-

ence database was created using BLAST (Altschul et al., 1990). The nucleotide database was cre-

ated with the new reference genome of N. furzeri (NFZ v2.0). Subsequently, the QTL marker

sequences were mapped to the database. Only markers with full support for the total length of 95

bp were considered as QTL markers.

Synteny analysis
Synteny analysis was performed using orthologous information from Cui et al., 2019 determined by

the UPhO pipeline (Ballesteros and Hormiga, 2016). For this, the 1-to-1 orthologous gene positions

of the new turquoise killifish reference genome (NFZ v2.0) were compared to two closely related tel-

eost species, Xiphophorus maculatus and Oryzias latipes. Result were visualized using Circos

(Krzywinski et al., 2009) for the genome-wide comparison and the genoPlotR package (Guy et al.,

2010) in R for the sex chromosome synteny analysis. Synteny plots for orthologous chromosomes of

Xiphophorus maculatus and Oryzias latipes were generated with Synteny DB (http://syntenydb.uore-

gon.edu) (Catchen et al., 2009).

Koeppen-Geiger index and bioclimatic variables
The Koeppen-Geiger classification data was taken from Peel et al., 2007 and the altitude, precipita-

tion per month, and the bioclimatic variables were obtained from the Worldclim database (v2.0

[Fick and Hijmans, 2017]). The monthly evapotranspiration was obtained from Trabucco and

Zomer, 2019. Aridity index was calculated based on the sum of monthly precipitation divided by

sum of monthly evapotranspiration. Maps in Figure 1—figure supplement 1 were generated with

QGIS version 2.18.20 combined with GRASS version 7.4 (Neteler et al., 2012), the Koeppen-Geiger

raster file, data from Natural Earth, and the river systems database from Lehner and Verdin, 2006.

DNA isolation and pooled population sequencing
The ethanol preserved fin tissue was washed with 1X PBS before extraction. Fin tissue was digested

with 10 mg/mL Proteinase K (Thermo Fisher) in 10 mM TRIS pH 8; 10 mM EDTA; 0.5 SDS at 50˚C

overnight. DNA was extracted with phenol-chloroform-isoamylalcohol (Sigma) followed by a washing

step with chloroform (Sigma). Next, DNA was precipitated by adding 2.5 vol of chilled 100% ethanol

and 0.26 vol of 7.5M Ammonium Acetate (Sigma) at �20˚C overnight. DNA was collected via centri-

fugation at 4˚C at 12000 rpm for 20 min. After a final washing step with 70% ice-cold ethanol and air

drying, DNA was eluted in 30 ml of nuclease-free water. DNA quality was checked on one agarose

gels stained with RotiSafe (Roth) and a UV-VIS spectrometer (Nanodrop2000c, Thermo Scientific).

DNA concentration was measured with Qubit fluorometer (BR dsDNA Assay Kit, Invitrogen). For

each population, the DNA of the individuals were pooled at equimolar contribution (GNP_G1_3,

GNP_G4 N = 29; NF414, NF303 N = 30). DNA pools were given to the Cologne Center of Genomic

(CCG, Cologne, Germany) for library preparation. The total amount of DNA provided to the

sequencing facility was 3.2 mg per pooled population sample. Libraries were sequenced with 150 bp

x two paired-ends on the HiSeq4000. Sequencing of pooled samples resulted in a range of 419–517

million paired-end reads for each population (Supplementary file 1B).

Mapping of pooled sequencing reads
Raw sequencing reads were trimmed using Trimmomatic-0.32 (ILLUMINACLIP:illumina-adaptors.

fa:3:7:7:1:true, LEADING:20, TRAILING:20, SLIDINGWINDOW:4:20, MINLEN:50 [Bolger et al.,

2014]). Data files were inspected with FastQC (version 0.11.22, https://www.bioinformatics.babra-

ham.ac.uk/projects/fastqc/). Trimmed reads were subsequently mapped to the reference genome

with BWA-MEM v0.7.12 (Li, 2013; Li and Durbin, 2010). The SAM output was converted into BAM

format, sorted, and indexed via SAMTOOLS v1.3.1 (Li et al., 2009). Filtering and realignment was

conducted with PICARD v1.119 (http://broadinstitute.github.io/picard/) and GATK (McKenna et al.,

2010). Briefly, the reads were relabeled, sorted, and indexed with AddOrReplaceReadGroups.

Duplicated reads were marked with the PICARD feature MarkDuplicates and reads were realigned

with first creating a target list with RealignerTargetCreator, second by IndelRealigner from the
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GATK suite. Resulting reads were again sorted and indexed with SAMTOOLS. For population

genetic bioinformatics analyses the BAM files of the pooled populations were converted into the

required MPILEUP format via the SAMTOOLS mpileup command. Low quality reads were excluded

by setting a minimum mapping quality of 20 and a minimum base quality of 20. Further, possible

insertion and deletions (INDELs) were identified with identifygenomic-indel-regions.pl script from

the PoPoolation package (Kofler et al., 2011a) and were subsequently removed via the filter-pileup-

by-gtf.pl script (Kofler et al., 2011a). Coding sequence positions that were identified to be putative

ambiguous were removed by providing the filter-pileup-by-gtf.pl script a custom modified GTF file

with the corresponding coordinates. After adapter and quality filtering, mapping to the newly

assembled reference genome resulted in mean genome coverage of 35x, 39x, and 47x for the popu-

lation NF303, NF414, and GNP, respectively (Supplementary file 1B).

Merging sequencing reads of populations from the Gonarezhou
National Park
Population GNP consists of two sampling sites (GNP-G1_3, GNP-G4) with very low genetic differen-

tiation (Figure 1—figure supplement 1c, Supplementary file 1C). Sequencing reads of the two

populations from the Gonarezhou National Park (GNP) were combined used the SAMTOOLS

‘merge’ command. The populations GNP-G1-3 and GNP-G4 were merged together and this popula-

tion was subsequently denoted as GNP.

Estimating genetic diversity
Genetic diversity in the populations was estimated by calculating the nucleotide diversity p (Nei and

Li, 1979) and Wattersons’s estimator q (Watterson, 1975). Calculation of p and q was done with a

sliding window approach by using the Variance-sliding.pl script from the PoPoolation program

(Kofler et al., 2011a). Non-overlapping windows with a length of 50 kb with a minimum count of

two per SNP, minimum quality of 20 and the population specific haploid pool size were used

(GNP = 116; NF414 = 60; NF303 = 60). Low covered regions that fall below half the mean coverage

of each population were excluded (GNP = 23; NF414 = 19; NF303 = 18), as well as regions that

exceed a two times higher coverage than the mean coverage (GNP = 94; NF414 = 77; NF303 = 70).

The upper threshold is set to avoid regions with possible wrong assemblies. Mean coverage was

estimated on filtered MPILEUP files. Each window had to be at least covered to 30% to be included

in the estimation.

Estimation of effective population size
Wattersons’s estimator of q (Watterson, 1975) is referred to as the population mutation rate. The

estimate is a compound parameter that is calculated as the product of the effective population size

(Ne), the ploidy (2 p, with p is ploidy) and the mutational rate m (q = 2pNem). Therefore, Ne can be

obtained when q, the ploidy and the mutational rate m are known. The turquoise killifish is a diploid

organism with a mutational rate of 2.6321e�nine per base pair per generation (assuming one gener-

ation per year in killifish Cui et al., 2019 and q estimates were obtained with PoPoolation (see previ-

ous Section) (Kofler et al., 2011a).

Estimating population differentiation index FST

The filtered and realigned BAM files of each population were merged into a single pileup file with

SAMTOOLS mpileup, with a minimum mapping quality and a minimum base quality of 20. The

pileup was synchronized using the mpileup2sync.jar script from the PoPoolation2 program

(Kofler et al., 2011b). Insertions and deletions were identified and removed with the identify-indel-

regions.pl and filter-sync-by-gtf.pl scripts of PoPoolation2 (Kofler et al., 2011b). Again, coding

sequence positions that were identified to be putative ambiguous were removed by providing the

filter-pileup-by-gtf.pl script a custom modified GTF file with the corresponding coordinates. Further

a synchronized pileup file for genes only were generated by providing a GTF file with genes coordi-

nates to the create-genewise-sync.pl from PoPoolation2 (Kofler et al., 2011b). FST was calculated

for each pairwise comparison (GNP vs NF303, GNP vs NF414, NF414 vs NF303) in a genome-wide

approach using non-overlapping sliding windows of 50 kb with a minimum count of four per SNP, a

minimum coverage of 20, a maximum coverage of 94 for GNP, 77 for NF414, and 70 for NF303 and
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the corresponding pool size of each population (N = 116; 60; 60). Each sliding window had to be at

least covered to 30% to be included in the estimation. The same thresholds, except the minimum

covered fraction, with different sliding window sizes were used to calculate the gene-wise FST for the

complete gene body (window-size of 2000000, step-size of 2000000) and single SNPs within genes

(window-size of 1, step-size of 1). The non-informative positions were excluded from the output. Sig-

nificance of allele differences per base-pair within the gene-coordinates were calculated with the

fisher´s exact test implemented in the fisher-test.pl script of PoPoolation2 (Kofler et al., 2011b). Cal-

culation of unrooted neighbor joining tree based on the genome-wide pairwise FST averages was

performed with the ape package in R (Paradis et al., 2004).

Detecting signatures of selection based on FST outliers
For FST-outlier detection, the pairwise 50kb-window FST-values for each comparison were Z-trans-

formed (ZFST). Next, regions potentially under strong selection were identified by applying an outlier

approach. Outliers were identified as non-overlapping windows of 50 kb within the 0.5% of lowest

and highest genetic differentiation per comparison. To reduce the number of false-positive results,

the outlier threshold was chosen at 0.5% highest and lowest percentile of each pairwise genetic dif-

ferentiation (Pruisscher et al., 2018; Guo et al., 2016). To find candidate genes within windows of

highest differentiation, a total of three selection criteria were used. First, the window-based ZFST
value had to be above the 99.5th percentile of pairwise genetic differentiation. Second, the gene FST
value had to be above the 99.5th percentile of pairwise genetic differentiation and last, the gene

needed to include at least one SNP with significant differentiation based on Fisher’s exact test (cal-

culated with PoPoolation2 [Kofler et al., 2011b]; p<0.001, Benjamini-Hochberg corrected

P-values [Benjamini and Hochberg, 1995]).

Identifying polymorphic sites
SNP calling was performed with Snape (Raineri et al., 2012). The program requires information of

the prior nucleotide diversity q. Hence, the initial values of nucleotide diversity obtained with PoPoo-

lation were used. Snape was run with folded spectrum and prior type informative. As Snape requires

the MPILEUP format, the previously generated MPILEUP files were used. SNP calling was separately

performed on coding and non-coding parts of the genome. Therefore, each population MPILEUP

file was filtered by coding sequence position with the filter-pileup-by-gtf.pl script of PoPoolation.

For coding sequences, the –keep-mode was set to retain all coding sequences. The non-coding

sequences were obtained by using the default option and thus discarding the coding sequences

from the MPILEUP file. Snape produces a posterior probability of segregation for each position. The

posterior probability of segregation was used to filter low-confidence SNPs and indicated in the spe-

cific section.

Divergence and polymorphisms in 0-fold and 4-fold sites
Polarization of synonymous sites (four-fold degenerated sites) and non-synonymous sites (zero-fold

degenerated sites) was done using the pseudogenomes of outgroups Nothobranchius orthonotus

and Nothobranchius rachovii. For each population the genomic information of the respective pseu-

dogenome was extracted with bedtools getfasta command (Quinlan, 2014; Quinlan and Hall,

2010) and the derived allele frequency of every position was inferred with a custom R script. Briefly,

only sites with the bases A, G, T or C in the outgroup pseudogenome were included and checked

whether the position has an alternative allele in each of the investigated populations. Positions with

an alternative allele present in the population data were treated as possible divergent or polymor-

phic sites. The derived frequency was determined as frequency of the allele not present in the out-

group. Occasions with an alternate allele present in the population data were treated as possible

divergent or polymorphic sites. Divergent sites are positions in the genome were the outgroup allele

is different from the allele present in the population. Polymorphic sites are sites in the genome that

have more than one allele segregating in the population. Only biallelic polymorphic sites were used

in this analysis. The DAF was determined as frequency of the allele not shared with the respective

outgroups. In general, positions with only one supporting read for an allele were treated as mono-

morphic sites. SNPs with a DAF < 5% or>95% were treated as fixed mutations. Further filtering was

done based on the threshold of the posterior probability of >0.9 calculated with Snape (see previous
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subsection), combined with a minimum and maximum coverage threshold per population (GNP: 24,

94; NF414:19, 77; NF303: 18, 70).

Asymptotic McDonald-Kreitman a

The rate of substitutions that were driven to fixation by positive selection was evaluated with an

improved method based on the McDonald-Kreitman test (McDonald and Kreitman, 1991). The test

assumes that the proportion of non-synonymous mutations that are neutral has the same fixation

rate as synonymous mutations. Therefore, under neutrality the ratio between non-synonymous to

synonymous substitutions (Dn/Ds) between species is equal to the ratio of non-synonymous to syn-

onymous polymorphisms within species (Pn/Ps). If positive selection takes place, the ratio between

non-synonymous to synonymous substitutions between species is larger than the ratio of non-synon-

ymous to synonymous polymorphism within species (McDonald and Kreitman, 1991). The concept

behind this is that the selected variant reaches fixation in a shorter time than by random drift. There-

fore, the selected variant increases Dn, not Pn. The proportion of non-synonymous substitutions that

were fixed by positive selection (a) was estimated with an extension of the McDonald-Kreitman test

(Smith and Eyre-Walker, 2002). Due to the presence of slightly deleterious mutations the estimate

of a can be underestimated. For this reason, the method used by Messer and Petrov was imple-

mented to calculate a as a function of the derived allele frequency x (Messer and Petrov, 2013;

Haller and Messer, 2017). With this method the true value of a can be inferred as the asymptote of

the function of a. Additionally, the value of a(x) for low derived frequencies should give an estimate

of the number of slightly deleterious mutations that segregate in the population.

Direction of selection (DoS)
To further investigate the signature of selection, the direction of selection (DoS) index for every

gene was calculated (Stoletzki and Eyre-Walker, 2011). DoS standardizes a to a value between �1

and 1. A positive value of DoS indicates adaptive evolution (positive selection) and a negative value

indicates the segregation of slightly deleterious alleles, therefore weaker purifying selection

(Stoletzki and Eyre-Walker, 2011). This ratio is undefined for genes without any information about

polymorphic or substituted sites. Therefore, only genes with at least one polymorphic and one

substituted site were included.

Inference of distribution of fitness effects
The distribution of fitness effects (DFE) was inferred using the program polyDFE2.0 (Tataru et al.,

2017). For this analysis the unfolded site frequency spectra (SFS) of non-synonymous (0-fold) and

synonymous sites (4-fold) were projected into 10 chromosomes for each population. Information

about the fixed derived sites was included in this analysis (using Nothobranchius orthonotus). Poly-

DFE2.0 estimates either the full DFE, containing deleterious, neutral and beneficial mutations, or

only the deleterious DFE. The best model for each population was obtained using a model testing

approach with three different models implemented in PolyDFE2.0 (Model A, B, C). Due to possible

biases from erroneous polarization or unknown demography, runs accounting for polarization errors

and demography (+eps, +r) were included. Initial parameters were automatically estimated with the

–e option, as recommended. To ensure that the parameter space is explored thoroughly, the basin

hopping option was applied with a maximum of 500 iterations (-b). The best model for each popula-

tion was chosen based on the Akaike Information Criterion (AIC). Confidence intervals were gener-

ated by running 200 bootstrap datasets with the same parameters used to infer the best model.

Simulations of population demography and the distribution of fitness
effects
We performed simulations with SLiM (version 3.3) (Haller and Messer, 2019), using demographic

parameters from the PSMC’ analysis. We simulated four models with two populations that diverged

from the same ancestral population and are identical in all population genetic parameters. We

adapted the simulation from Rousselle et al., 2018 and simulated 1500 coding sequences of 500 bp

length, separated by non-coding regions and re-scaled the population genetic parameter to an ini-

tial population size of 10 k (mutation rate of 5.468928e-08, recombination rate of 6.604764e-06).

The neutral mutations were initialized in ~1/3 of the coding region and deleterious mutations were
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initialized in ~2/3 of the coding region, resembling the structure of a codon. Deleterious mutations

were simulated with a selection coefficient s, a measure of relative fitness, drawn from the same

reflected gamma distribution (mean of �2.5 and shape of 0.35) and a dominance coefficient of 0.1.

All models start with an initial burn-in phase of 50000 generations to generate genetic diversity and

a stable population. The models vary in either having immediate population size changes followed

by constant population size (models A, B) or having exponential growth (models C, D). We further

distinguished between a split directly after the burn-in phase (models B, D) or at a later timepoint,

following the PSMC’ analysis interpretation (models A, C). The scripts are available on https://

github.com/valenzano-lab/simulation_DFE. We performed 25 replicates per model and used a sam-

ple size of 30 diploid individuals to retrieve the fixed and segregating mutations. The synonymous

and non-synonymous site-frequency-spectra were built by projecting the retrieved mutations into 10

chromosomes, comparable to the site-frequency-spectra generated for the observed data of the tur-

quoise killifish populations and subsequently used as the input for PolyDFE2.0. Model choice of the

negative distribution of fitness effects was performed similar to the initial analysis as described previ-

ously, except we did not include the ancestral misidentification error.

Variant annotation
Classification of changes in the coding-sequence (CDS) was done with the variant annotator SnpEFF

(Cingolani et al., 2012). The new genome of Nothobranchius furzeri (NFZ v2.0) was implemented to

the SnpEFF pipeline. Subsequently, a database for variant annotation with the genome NFZ v2.0

FASTA file and the annotation GTF file was generated. For variant annotation the population specific

synonymous and non-synonymous sites with a change in respect to the reference genome NFZ v2.0

were used to infer the impact of these sites. The possible annotation impact classes were low, mod-

erate, and high. SNPs with a frequency below 5% or above 95% were excluded for this analysis. To

be consistent with the analysis of the distribution of fitness effects, only positions also found to be

present in the N. orthonotus pseudogenome were considered. Positions with warnings in the variant

annotation were removed.

Consurf analysis
The Consurf score was calculated accordingly to the method used in Cui et al., 2019. We used the

Consurf (Pupko et al., 2002; Mayrose et al., 2004; Glaser et al., 2003; Ashkenazy et al., 2016)

package to assign each AA a conservation score based on the evolutionary rate in homologs of

other vertebrates. Consurf scores were estimated for 12575 genes of N. furzeri and synonymous and

non-synonymous genomic positions were matched with the derived allele frequency of N. orthono-

tus and N. rachovii, respectively. The derived frequencies were binned in five bins and we used pair-

wise Wilcoxon rank sum test to assess significance after correcting for multiple testing (Benjamini

and Hochberg adjustment) between each subsequent bin per population and matching bins

between populations.

Over-representation analysis
Gene ontology (GO) and pathway overrepresentation analysis was performed with the online tool

ConsensusPathDB (http://cpdb.molgen.mpg.de;version34) (Herwig et al., 2016) using ‘KEGG’ and

‘REACTOME’ databases. Briefly, each gene present in the outlier list was provided with an

ENSEMBL human gene identifier (Zerbino et al., 2018), if available, and entered as the target list

into the user interface. All genes included in the analysis and with available human ENSEMBL identi-

fier were used as the background gene list. ConsensusPathDB maps the entries to the databases

and calculates the enrichment score for each entity by comparing the proportion of target genes in

the entity over the proportion of background genes in the entity. For each of the enrichment a

P-value is calculated based on a hyper geometric model and is corrected for multiple testing using

the false discovery rate (FDR). Only GO terms and pathways with more than two genes were

included. Overrepresentation analysis was performed on genes falling below the 2.5th percentile or

above the 97.5th percentile thresholds. The percentiles for either FST or DoS values were calculated

with the quantile() function in R.
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Statistical analysis and data processing
Statistical analyses were performed using R studio version 1.0.136 (R version 3.3.2 [RStudio, 2015])

on a local computer and R studio version 1.1.456 (R version 3.5.1) in a cluster environment at the

Max-Planck-Institute for Biology of Ageing (Cologne). Unless otherwise stated, the functions t.test()

and wilcox.test() in R have been used to evaluate statistical significance. To generate a pipeline for

data processing we used Snakemake (Köster and Rahmann, 2012). Figure style was modified using

Inkscape version 0.92.4. For circular visualization of genomic data we used Circos (Krzywinski et al.,

2009).

Inference of demographic population history with individual
resequencing data
To infer the demographic history, we performed whole genome re-sequencing of single individuals

from all populations resulting in mean genome coverage between 13-21x (Supplementary file 1B).

Demographic history was inferred from single individual sequencing data using Pairwise Sequential

Markovian Coalescence (PSMC’ mode from MSMC2 [Schiffels and Durbin, 2014]). Re-sequencing

of single individuals was performed with the DNA of single individuals extracted for the pooled

sequencing for each examined population. The Illumina short-insert library was constructed based

on a published protocol (Rowan et al., 2015). Extracted DNA (500 ng) was digested with fragmen-

tase (New England Biolabs) for 20 min at 37˚C, followed by end-repair and A-tailing (1.0 ml NEB End-

repair buffer, 0.5 ml Klenow fragment, 0.5 ml Taq.Polymerase, 0.2 ml T4 polynucleotide kinase, 10 ml

reaction volume, 30 min at 25˚C, 30 min at 75˚C) and adapter ligation (NEB Quick ligase buffer 12.5

ml, Quick ligase 0.5 ml, 1 ml adapter P1 (D50X), 1 ml adapter P2 (universal), 5 mM each; 20 min at 20˚

C, 25 ml reaction volume). Next, ligation mix was diluted to 50 ml and used 0.583:1 vol of home-

brewed SPRI beads (SPRI binding buffer: 2.5M NaCL, 20 mM PEG 8000, 10 mM Tris-HCL, 1 mM

EDTA,ph = 8, 1 mL TE-washed SpeedMag beads GE Healthcare, 65152105050250 per 100 mL

buffer) for purification. The ligation products were amplified with 9 PCR cycles using KAPA Hifi kit

(Roche, P5 universal primer and P7 indexed primer D7XX). The samples were pooled and sequenced

on Hiseq X. Raw sequencing reads were trimmed using Trimmomatic-0.32 (ILLUMINACLIP:illumina-

adaptors.fa:3:7:7:1:true, LEADING:20, TRAILING:20, SLIDINGWINDOW:4:20, MINLEN:50)

(Bolger et al., 2014). Data files were inspected with FastQC v0.11.22. Trimmed reads were subse-

quently mapped to the reference genome with BWA-MEM (version 0.7.12). The SAM output was

converted into BAM format, sorted, and indexed via SAMTOOLS v1.3.1 (Li et al., 2009). Filtering

and realignment was conducted with PICARD v1.119 and GATK (McKenna et al., 2010). Briefly, the

reads were relabeled, sorted, and indexed with AddOrReplaceReadGroups. Duplicated reads were

marked with the PICARD feature MarkDuplicates and reads were realigned with first creating a tar-

get list with RealignerTargetCreator, second by IndelRealigner from the GATK suite. Resulting reads

were again sorted and indexed with SAMTOOLS. Next, the guidance for PSMC’ (https://github.

com/stschiff/msmc/blob/master/guide.md) was followed; VCF-files and masked files were generated

with the bamCaller.py script (MSMC-tools package). This step requires the chromosome coverage

information to mask regions with too low or too high coverage. As recommended in the guidelines,

the average coverage per chromosome was calculated using SAMTOOLS. In addition, this step was

performed using a coverage threshold of 18 as recommended by Nadachowska-Brzyska et al.,

2016. Final input data were generated using the generate_multihetsep.py script (MSMC-tools pack-

age). Subsequently, for each sample PSMC’ was run independently. Bootstrapping was performed

for 30 samples per individual and input files were generated with the multihetsep_bootstrap.py

script (MSMCtools package).

Analysis of differential expressed genes with age
We downloaded the previously published RNAseq data from a longitudinal study of Nothobranchius

furzeri (Reichwald et al., 2015). The data set contains five time points (5 w, 12 w, 20 w, 27 w, 39 w)

in three different tissues (liver, brain, skin). The raw reads were mapped to the NFZ v2.0 reference

genome and subsequently counted using STAR (version 2.6.0 .c) (Dobin et al., 2013) and Feature-

Counts (version 1.6.2) (Liao et al., 2014). We performed statistical analysis of differential expression

with age using DESeq2 (Love et al., 2014) and age as factor. Genes are classified as upregulated in
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young (log(FoldChange)<0, adjusted p<0.01), upregulated in old (log(FoldChange)>0,adjusted

p<0.01).
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Mauxion F, Prève B, Séraphin B. 2013. C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT
complex. RNA Biology 10:267–276. DOI: https://doi.org/10.4161/rna.23065, PMID: 23232451

Mayrose I, Graur D, Ben-Tal N, Pupko T. 2004. Comparison of site-specific rate-inference methods for protein
sequences: empirical bayesian methods are superior. Molecular Biology and Evolution 21:1781–1791.
DOI: https://doi.org/10.1093/molbev/msh194, PMID: 15201400

McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the adh locus in Drosophila. Nature 351:652–
654. DOI: https://doi.org/10.1038/351652a0, PMID: 1904993

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly
M, DePristo MA. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Research 20:1297–1303. DOI: https://doi.org/10.1101/gr.107524.110,
PMID: 20644199

Messer PW, Petrov DA. 2013. Frequent adaptation and the McDonald-Kreitman test. PNAS 110:8615–8620.
DOI: https://doi.org/10.1073/pnas.1220835110, PMID: 23650353

Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. 2016. PSMC analysis of effective population sizes in
molecular ecology and its application to black-and-white Ficedula flycatchers. Molecular Ecology 25:1058–
1072. DOI: https://doi.org/10.1111/mec.13540, PMID: 26797914

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases.
PNAS 76:5269–5273. DOI: https://doi.org/10.1073/pnas.76.10.5269, PMID: 291943

Neteler M, Bowman MH, Landa M, Metz M. 2012. GRASS GIS: a multi-purpose open source GIS. Environmental
Modelling & Software 31:124–130. DOI: https://doi.org/10.1016/j.envsoft.2011.11.014

Nojima H, Rothhämel S, Shimizu T, Kim CH, Yonemura S, Marlow FL, Hibi M. 2010. Syntabulin, a motor protein
linker, controls dorsal determination. Development 137:923–933. DOI: https://doi.org/10.1242/dev.046425,
PMID: 20150281

Nonaka E, Sirén J, Somervuo P, Ruokolainen L, Ovaskainen O, Hanski I. 2019. Scaling up the effects of
inbreeding depression from individuals to metapopulations. Journal of Animal Ecology 88:1202–1214.
DOI: https://doi.org/10.1111/1365-2656.13011, PMID: 31077598

Orlov SV, Kuteykin-Teplyakov KB, Ignatovich IA, Dizhe EB, Mirgorodskaya OA, Grishin AV, Guzhova OB,
Prokhortchouk EB, Guliy PV, Perevozchikov AP. 2007. Novel repressor of the human FMR1 gene - identification
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