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1  | INTRODUC TION

Lifespan has a formative role on most other life-history traits as 
it defines the timeframe for completion of all life-determining 
processes (Stearns,  1992). Longevity in wild populations is 
the most relevant lifespan estimate from an evolutionary per-
spective, because it integrates all longevity-shaping forces of 
natural selection (Monaghan et al., 2008; Nussey et al., 2008). 

In particular, lifespan in natural populations is moulded by the 
mode and rate of extrinsic mortality (Maklakov et  al.,  2015; 
Medawar,  1952; Williams,  1957), dominated by predation, dis-
eases, competition, natural disasters and accidental deaths 
(Reichard,  2017). Species with high extrinsic mortality are ex-
pected to evolve short lifespans (Medawar, 1952; Williams, 1957) 
and those species may provide critical insights into how natural 
selection limits lifespan.
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Abstract
The diversity of life histories across the animal kingdom is enormous, with direct 
consequences for the evolution of lifespans. Very short lifespans (maximum shorter 
than 1 year in their natural environment) have evolved in several vertebrate lineages. 
We review short-lived fish species which complete either single (annual/univoltine) 
or multiple (multivoltine) generations within a year. We summarize the commonali-
ties and particulars of their biology. Apart from annual killifishes (with >350 spe-
cies), we detected 60 species with validated lifespan shorter than 1  year in their 
natural environment. Considering the low number of reports on fish lifespan (<5% 
of 30,000+ fish species; 1,543 species), the total number of short-lived fish species 
may be relatively high (>1,200 species). Short-lived fish species are scattered across 
12 orders, indicating that short lifespan is not a phylogenetically conserved trait but 
rather evolves under specific ecological conditions. In general, short-lived fish spe-
cies are small (typically 55 ± 35 mm), experience high predation (making them impor-
tant part of ecosystem trophodynamics) and live in shallow warm waters with high 
productivity and stable abiotic conditions (e.g. Gobiidae, Clupeidae). Others utilize 
temporally constrained environments, where they survive unfavourable conditions 
as dormant stages (annual killifishes). They also utilize less productive environments; 
in this case, they migrate between productive and un-productive environments 
(e.g. Myctophidae, Salangidae). These species include the putatively shortest-lived 
(Schindleria pietschmanni: Schindleriidae) and earliest maturing (Nothobranchius 
furzeri: Nothobranchiidae) vertebrates and represent the lower limit of vertebrate 
longevity. Their examination may provide important insights into the evolutionary 
and mechanistic understanding of ageing.
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Among vertebrates, several species are reported to have ex-
tremely short lifespans of several months in their natural environ-
ment (Depczynski & Bellwood, 2005; Karsten et al., 2008). One of 
the first references to a short-lived vertebrate dates from the 19th 
century when R. Collet used the term “annual vertebrate” for a trans-
parent goby—Aphia minuta (Gobiidae) (Collet, 1878). Since then, ver-
tebrates with a maximum lifespan equal to or shorter than a year have 
been reported from wild populations of a whole range of vertebrate 
taxa including fish (Depczynski & Bellwood, 2005), reptiles (Eckhardt 
et al., 2017) and mammals (Dickman & Braithwaite, 1992). All these 
species experience strong adult mortality induced by high preda-
tion rate (Depczynski & Bellwood, 2006), environmental constraints 
(Berois et al., 2016; Eckhardt et al., 2017) or exhibit high postrepro-
ductive mortality (Dickman & Braithwaite, 1992). Understanding the 
causes and consequences of extremely short lifespans is important 
for conservation management (Lessa et al., 2008), didactic purposes 
(Flindt, 2006) and for the development of evolutionary theories of 
life histories (Stearns, 1992).

Production of more than a single generation per year or devel-
opment of dormant stages (or both strategies) is necessary for the 
persistence of short-lived species. Species with multiple genera-
tions within a year are termed multivoltine species (Crawford, 1981; 
Southgate, 1981) and are common among invertebrate taxa (Corbet 
et al., 2006; Crawford, 1981; Southgate, 1981), but relatively rare in 
vertebrates (Lambin & Yoccoz, 2001). Using dragonflies (Odonata), 
Corbet et al.  (2006) demonstrated that multivoltinism is positively 
related to low latitude, in accordance with the prediction that multi-
voltine species are associated with high ecosystem productivity. To 
our knowledge, the term “multivoltine” is applied rarely (if ever) to 
ray-finned fishes (Actinopterygii). We believe that the term “multi-
voltine species” is appropriate for fish species fulfilling the criterion 
of multiple generations per year.

Ray-finned fishes are the most diversified vertebrate group 
with the occurrence of short lifespans. Among them, killifishes 
(family Nothobranchiidae in Africa and Rivulidae in the Neotropics, 
Cyprinodontiformes) are apparently the most diverse group of 
short-lived fishes, containing more than 270 and 420 described spe-
cies respectively (Froese & Pauly, 2019) of which 350 species (i.e. 
approximately 50%) are so-called annual species (Huber, 2020). In 
annual killifishes, posthatching lifespan is supposedly shorter than 
a year, because they occur almost exclusively in regions where sea-
sonal rainfall gives rise to temporary pools which desiccate within 
several months (Berois et  al.,  2016; Furness,  2016; Reichard & 
Polačik, 2019). Indeed, the duration of pool inundation is the main 
evolutionary force determining the evolution of annual killifish 
lifespan—species and populations from drier regions retain shorter 
lifespans in captivity (Blažek et al., 2017; Terzibasi et al., 2008). When 
their pool desiccates, all adults die and populations persist only as 
desiccation-resistant embryos buried in dry mud (Furness,  2016). 
The short lifespan and suitability for captive breeding have made 
annual killifishes a promising model for ageing research (Cellerino 
et al., 2016; Walford, 1969). Their high diversity and general aware-
ness of their short lifespan contribute to the almost exclusive use 

of the term “annual fish” for annual killifish (Berois et  al.,  2016; 
Myers, 1952; Wourms, 1967), despite the fact that annual lifespan is 
not exclusive to annual killifish.

Paedomorphic species are another abundant group among ex-
ceptionally short-lived fishes (Kon & Yoshino, 2002; La Mesa, 1999, 
this study). Progenetic paedomorphosis represents a condition 
when maturation of the gonads is completed while somatic charac-
ters remain in a nonadult state (La Messa, 2011). In ray-finned fishes, 
this phenomenon is associated with body miniaturization (Johnson 
& Brothers, 1993; Rüber et al., 2007). For example, Schindleria spp. 
are very small (< 22 mm) scaleless gobies, with reduced pigmenta-
tion and ossification (Johnson & Brothers, 1993). Paedomorphic fish 
species with known lifespan are exceptionally short-lived. This is in 
striking contrast to the extended lifespan of paedomorphic amphib-
ians (Voituron et al., 2011), providing interesting potential to study 
the environmental conditions and evolutionary mechanisms of this 
difference.

To our knowledge, the occurrence of short-lived ray-finned fish 
species with a natural lifespan shorter than one year has not been 
systematically summarized. In this review, we aim (a) to provide an 
overview of short-lived ray-finned fish species with maximum lifes-
pans equal to or shorter than one year in the wild. In general, we 
exclude reports of short lifespans of annual killifish from this review 
(since they have been reviewed elsewhere (e.g. Berois et al., 2016)), 
with exceptions where it was necessary to include them for appro-
priate interpretation of findings. (b) We use our unpublished results 
from wild populations of African annual killifish, Nothobranchius 
furzeri, to compare natural lifespans between this species and lifes-
pan reports of other short-lived fish species. (c) We characterize the 
biology of short-lived fish species to determine common trends in 
their ecology and life history. (d) Finally, we define and characterize 
the terms “annual fish” and “multivoltine fish.”

2  | MATERIAL AND METHODS

2.1 | Databases searched

We were principally interested in fish species that exhibit a maxi-
mum lifespan shorter than one year in their natural environment. 
First, we reviewed databases developed to record animal lifespans—
AnAge database (Tacutu et  al.,  2013) accessed 30 May 2020 
(https://genom​ics.senes​cence.info/speci​es/), Longevity Records 
(McDonough et al., 2000) accessed 25 May 2020 (https://www.de-
mogr.mpg.de/longe​vityr​ecord​s/0503.htm) and rfishbase package v. 
3.0.4 (Boettiger et al., 2012) implemented in R environment (R Core 
Team, 2019) accessed 27 May 2020. Second, we evaluated the com-
prehensiveness of available fish species lifespan information using 
rfishbase to estimate the proportion of ray-finned fish species with 
reported maximum lifespan overall. Given that references in the da-
tabases often cited sources prone to imprecise data, such as “grey 
literature” or books, we used Google Scholar (https://schol​ar.goo-
gle.com/) to search for the primary source of database information. 

https://genomics.senescence.info/species/
https://www.demogr.mpg.de/longevityrecords/0503.htm
https://www.demogr.mpg.de/longevityrecords/0503.htm
https://scholar.google.com/
https://scholar.google.com/
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We used species Latin name in quotation marks and then added 
one of the following five search terms: longevity, lifespan, life span, 
age, otolith. Each term was used for a separate search. For each run, 
we checked the first 260 short text snippets/abstracts provided by 
Google Scholar. For relevant entries, we screened the source article 
to validate original information. We also searched those articles for 
any link to other records of short-lived fish species.

Third, we searched keyword “annual fishes” in Google Scholar 
(excluding patents and citations, accessed 8 June 2020) and checked 
the first 800 results out of a total of 1,360. Of the first 800 results 
24 were irrelevant and were omitted. From the rest, 97.7% refer-
enced annual killifish only. The term “annual fishes” was used instead 
of “annual fish” because the latter term provided only 2% of results 
related to short-lived fish species other than annual killifish (7 out of 
300 checked results, 11,800 results in total). 57% of results (172 out 
of 300) related to annual killifish and 40% (121 of 300) yielded irrel-
evant results such as “statistics of annual fish harvest” etc. A search 
for the term “ephemeral fish” (65 results) returned almost exclusively 
nonrelevant results and, in a few cases, it returned the species al-
ready yielded by the previous searches.

2.2 | Criteria for suitable longevity report

The retrieved records were screened using the following criteria. 
The major criterion was that it had been externally peer-reviewed 
or published as a report of a relevant international authority 
(e.g. Food and Agriculture Organization of the United Nations, 
Australian Centre for International Agricultural Research or South 
Pacific Commission). In addition to peer-reviewed articles and re-
ports, three theses/dissertations were also included as relevant 
resources.

The second criterion for selection was the method for age 
estimate. The following means of maximum lifespan estimates 
were considered reliable, reading of daily growth increments in 

otoliths (Pannella, 1971), following survival of individuals in the wild 
(Stearns,  1983) and duration of habitat existence in species from 
ephemeral habitats (Pen et  al.,  1993; Vrtílek et  al.,  2018). Given 
the variation in the quality of reported results, we ascribe notes to 
each reported maximum age estimate (Table 1) to pinpoint potential 
methodological issues (Campana, 2001).

Several studies used age estimating methods that did not fulfil 
our criteria and were thus omitted. Studies that estimated age using 
body size distributions were omitted, because age may be decou-
pled from body size when fish reach asymptotic body size (Choat 
& Robertson,  2002; O’Farrell et  al.,  2015). Reports that simply 
mentioned species maximum lifespan, but did not provide relevant 
information how the estimate was reached, were excluded from 
the main body of the paper and are summarized in Table S1. Some 
species have principally annual populations while other natural 
populations live longer than one year, such as Gasterosteus aculea-
tus (Gasterosteidae) (Giles,  1987) or Rhodeus amarus (Cyprinidae) 
(Konečná & Reichard,  2011). These species are not part of this 
review because they often live longer than one year in the wild. 
Similarly, species with sexual dimorphism in lifespan and only one 
of the sexes having a maximum lifespan of less than one year in the 
wild, such as Gambusia spp. (Poeciliidae) (Cabral & Marques, 1999) 
or Ceratoscopelus warmingii (Myctophidae) (Linkowski et  al.,  1993), 
were not included.

3  | RESULTS AND DISCUSSION

3.1 | Overview of short-lived fish species and their 
phylogenetic position

We found 60 species (Tables  2–4) other than annual killifish with 
reported maximum lifespan of one year or less in their natural en-
vironment. These species are distributed over 12 orders (Figure 1) 
suggesting that short lifespan has evolved independently several 

Index Caveat

X A different method than otolith reading was used for lifespan determination

a Formation of daily growth increments in otolith was not validated for the studied 
species

b The age at first otolith increment formation was not validated

c The increments in outer edge of otolith show reduced readability—potential 
underestimate of maximum age

d Sampling did not cover the potential for seasonal fluctuation in population age 
structure (i.e. sampling was performed less than three times within a year)

e Species age estimate was based on sampling of a single population

f Sample size was not provided, or was smaller than 100 when the whole body size 
spectrum per species was age determined or when less than 10 largest individuals 
were age determined

Note: Reported indices serve to determine possible shortcomings in data presented in Tables 2–
4 and suggest where lifespan estimates may change in future when more studies have been 
conducted. The reported data on species lifespan in Tables 2–4 should be taken as an evidence of 
lifespan shorter than one year rather than as a precise estimate of maximum natural lifespan.

TA B L E  1   Overview of shortcomings 
of age estimation from otolith readings 
based on criteria outlined by Campana 
(2001), and extended to include other 
potential biases relevant for our study
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times. Data on maximum fish age are generally scarce, because only 
4.7% (1,543 of a total of 32,872 species) of extant ray-finned fish 
species have registered lifespans in rfishbase. In general, short-lived 
species are small with body size 55 ± 35 mm (median ± median ab-
solute deviation, both rounded to 5 mm). Below, we provide defini-
tions of annual and multivoltine fish and synthesize the evolutionary 
ecology and basic biological characteristics of the most commonly 
reported species.

3.2 | Biology of the most frequently reported 
groups of short-lived fish

3.2.1 | Short-lived gobies

The second largest group of fish species (after annual killifishes) 
with reported lifespan shorter than a year in our literature review 
were short-lived gobies (Gobiiformes) (Table  2). Short-lived gobies 

TA B L E  2   Overview of short-lived fish species from order Gobiiformes with natural lifespan shorter than one year

Species Order (Family) Voltinism
Largest 
specimen Max. lifespan

Major source 
of mortality Reference

Aphia minuta Gobiiformes (Gobiidae) Annual 55 mm TL 275 daysb Reproduction Iglesias et al. (1997), 
La Mesa (1999)

Crystalogobius linearis Gobiiformes (Gobiidae) Annual 41 mm TL 225 daysa,b,e Reproduction La Mesa (2001)

Eviota sigillata Gobiiformes (Gobiidae) Multivoltine 18 mm TL 59 daysb,d Predation Depczynski and 
Bellwood (2005)

Eviota melasma Gobiiformes (Gobiidae) Multivoltine 27 mm TL 97 daysb,d Predation Depczynski and 
Bellwood (2006)

Eviota queenslandica Gobiiformes (Gobiidae) Multivoltine 26 mm TL 99 daysb,d Predation Depczynski and 
Bellwood (2006)

Eviota epiphanes Gobiiformes (Gobiidae) Multivoltine 19 mm TL 61 daysb,d,e,f Predation Grant (2013); 
Longenecker and 
Langston (2005)

Trimma nasa Gobiiformes (Gobiidae) Multivoltine 17 mm SL 87 daysa,b,d,e Predation Winterbottom and 
Southcott (2008)

Trimma benjamini Gobiiformes (Gobiidae) Multivoltine 23 mm SL 140 daysa,b,d,e,f Predation Winterbottom 
et al. (2011)

Paedogobius kimurai Gobiiformes (Gobiidae) Multivoltine 16 mm SL 67 daysa,b,e,f Reproduction, 
predation

Kon and Yoshino 
(2002)

Mugilogobius chulae Gobiiformes (Gobiidae) Multivoltine 21 mm SL 137 daysc,e,f Predation Kunishima and 
Tachihara (2019)

Mugilogobius sp. Gobiiformes (Gobiidae) Multivoltine 36 mm SL 150 daysc,e,f Predation Kunishima and 
Tachihara (2019)

Istigobius decoratus Gobiiformes (Gobiidae) Annual 84 mm TL 266 daysc Predation Kritzer, (2002)

Valenciennea muralis Gobiiformes (Gobiidae) Annual 111 mm TL 363 daysb,e Predation Hernaman and 
Munday (2005)

Pseudogobius masago Gobiiformes (Gobiidae) Multivoltine 18 mm SL 124 daysb NA Saimaru et al. (2018)

Brachygobius 
mekongensis

Gobiiformes (Gobiidae) Multivoltine 14 mm SL 78 daysa,b NA Morioka and Sano 
(2009)

Coryphoterus kuna Gobiiformes (Gobiidae) Multivoltine 15 mm SL 148 daysa,b,f Predation Victor et al. (2010)

Coryphopterus 
personatus/hyalinus

Gobiiformes (Gobiidae) NA 58 mm TL 195 daysa,b,d,e,f Predation Beeken (2019)

Bathygobius coalitus Gobiiformes (Gobiidae) Annual 68 mm TL 307 daysb,c,e NA Shafer (2000)

Schindleria sp. Gobiiformes 
(Schindleridae)

Multivoltine 30 mm SL 60 daysa,b,e Reproduction, 
predation

Kon and Yoshino 
(2002)

Schindleria praematura Gobiiformes 
(Schindleridae)

Multivoltine 24 mm TL 42 daysa,b,f Reproduction, 
predation

Landaeta (2002(; 
Whittle (2003)

Schindleria 
pietschmanni

Gobiiformes 
(Schindleridae)

Multivoltine 17 mm TL 29 daysa,b Reproduction, 
predation

Whittle (2003)

Note: Taxonomic group is assigned in accordance with Rabosky et al., 2018. Voltinism is considered as: “annual”—species with lifespan one year or 
shorter, which probably complete a single generation within a year , “multivoltine”—species complete two or more generations within a year (Corbet 
et al., 2006). The largest specimen refers to the size of the largest age determined individual, TL = total length, SL = standard length. Superscript 
letters for lifespan records are defined in Table 1. Age reports with more indices have higher likelihood of longevity estimate changing in the future. 
Common names of all listed species are given in Table S2.
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TA B L E  3   Overview of short-lived fish species from orders Clupeiformes and Myctophiformes with natural lifespan shorter than one year

Species Order (Family) Voltinism
Largest 
specimen Max. lifespan

Major source 
of mortality Reference

Spratelloides robustus Clupeiformes (Clupeidae) Annual 82 mm FL 241 daysb Predation Rogers et al. (2003)

Spratelloides delicatulus Clupeiformes (Clupeidae) Multivoltine 66 mm SL 159 daysb Predation Dalzell et al. (1987), 
Milton and Blaber 
(1993), Milton 
et al. (1991), 
Milton 
et al. (1993), 
Milton et al. (1989)

Spratelloides lewisi Clupeiformes (Clupeidae) Multivoltine 63 mm SL 179 daysa,b Predation Milton et al. (1991)

Spratelloides gracilis Clupeiformes (Clupeidae) Multivoltine 58 mm SL 149 daysb Predation Milton and Blaber 
(1993), Milton 
et al. (1991), 
Milton et al. (1989)

Clupeichthys aesarnensis Clupeiformes (Clupeidae) Annual 60 mm SL 243 daysa,b Predation Morioka 
et al. (2019)

Stolephorus 
carpentariae

Clupeiformes 
(Eugraulidae)

Multivoltine 71 mm TL 158 daysb,e,f Predation Hoedt (2002)

Stolephorus nelsoni Clupeiformes 
(Eugraulidae)

Annual 103 mm TL 285 daysb Predation Hoedt (1989, 2002)

Stolephorus 
commersonnii

Clupeiformes 
(Eugraulidae)

Annual 158 mm TL 240 daysb,c,e,f Predation Hoedt (2002)

Stolephorus insularis Clupeiformes 
(Eugraulidae)

Multivoltine 64 mm TL 126 daysb,e,f Predation Hoedt (2002)

Encrasicholina 
heteroloba

Clupeiformes 
(Eugraulidae)

Annual 90 mm TL 240 daysb,c Predation Milton and Blaber 
(1993), Milton 
et al. (1989), 
Wright 
et al. (1989)

Encrasicholina devisi Clupeiformes 
(Eugraulidae)

Multivoltine 62 mm SL 122 daysb Predation Hoedt (2002), 
Milton and Blaber 
(1993)

Encrasicholina purpurea Clupeiformes 
(Eugraulidae)

Multivoltine 63 mm SL 189 daysb Predation Struhsaker and 
Uchiyama (1976)

Encrasicholina punctifer Clupeiformes 
(Eugraulidae)

Multivoltine 80 mm SL 114 daysb,f Predation Milton and Blaber 
(1993)

Engraulis japonicus Clupeiformes 
(Eugraulidae)

Annual 137 mm SL 329 daysb Predation Yukami et al. (2008)

Benthosema suborbitale Myctophiformes 
(Myctophidae)

Annual 33 mm SL 325 daysb Predation, 
reproduction

Gartner (1991)

Benthosema pterotum Myctophiformes 
(Myctophidae)

Annual 53 mm SL 300 daysa,b Predation, 
reproduction

Gjөsæter (1981, 
1984)

Benthosema fibulatum Myctophiformes 
(Myctophidae)

Annual 83 mm SL 300 daysa,b,d,f Predation, 
reproduction

Gjөsæter (1978, 
1981)

Diaphus dumerilii Myctophiformes 
(Myctophidae)

Annual 63 mm SL 360 daysb, Predation, 
reproduction

Gartner (1991)

Symbolophorus 
evermanni

Myctophiformes 
(Myctophidae)

Annual 86 mm SL 249 
daysa,b,d,e,f

Predation, 
reproduction

Gjөsæter (1987)

Myctophum spinosum Myctophiformes 
(Myctophidae)

Annual 81 mm SL 302 
daysa,b,d,e,f

Predation, 
reproduction

Gjөsæter (1987)

Note: Taxonomic group is assigned in accordance with Rabosky et al., 2018. Voltinism is considered as “annual”—species with lifespan one year or 
shorter, which probably complete a single generation within a year, “multivoltine”—species complete two or more generations within a year (Corbet 
et al., 2006). The largest specimen refers to the size of the largest age determined individual, TL = total length, SL = standard length, FL = fork length. 
Superscript letters for lifespan records are defined in Table 1. Age reports with more indices have higher likelihood of longevity estimate changing in 
the future. Common names of all listed species are given in Table S3.
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include both marine and freshwater species (Morioka & Sano, 2009; 
Winterbottom et al., 2011), and bottom dwelling and pelagic species 
(Depczynski & Bellwood, 2006; Iglesias et al., 1997). Paedomorphic 
species are common in this group, for example Paedogobius kimu-
rai (Gobiidae), (Kon & Yoshino, 2002) or Schindleria sp. Those spe-
cies are estimated to produce nine generations per year (Kon & 
Yoshino,  2002). This is the highest number of generations pro-
duced per year among fish species, and conceivably among all ver-
tebrates. The vast majority of the known short-lived goby species 
inhabit tropical coral reefs, where they represent an important 
part of trophic network, feeding on detritus and zooplankton and 
being predated by piscivores (Brandl et  al.,  2019; Wilson,  2004; 
Winterbottom & Southcott, 2008). Given their small body size, the 
predation pressure can become a major constraint for their lifespan 
(Depczynski & Bellwood, 2006; Winterbottom & Southcott, 2008). 
Most of the short-lived goby species reproduce repeatedly and re-
tain the male parental care typical for other gobies (Depczynski & 
Bellwood, 2006; Patzner et al., 2011).

3.2.2 | Short-lived clupeids and myctophids

Clupeids (Clupeiformes) with a maximum lifespan shorter than a 
year in the wild (Table 3) are mostly found in tropical and subtropical 
marine environments (Hoedt, 2002; Struhsaker & Uchiyama, 1976), 
but are also reported from freshwaters (Morioka et  al.,  2019). 
Short-lived clupeids are small pelagic species feeding mostly on 
zooplankton. The major source of adult mortality in short-lived 

clupeids is predation by larger pelagic fish (Blaber et al., 1990; Milton 
et al., 1991) and commercial fishery also significantly contributes to 
their mortality (Milton et al., 1991; Morioka et al., 2019). Lifespan 
data from the short-lived clupeids are available because of their eco-
nomic importance for human consumption and as a tuna-baitfish 
(Milton et  al.,  1993). Similarly to short-lived gobies, short-lived 
clupeids rarely reach their asymptotic body size and their growth 
remains linear throughout their natural lifespan in the wild (Rogers 
et  al.,  2003; Struhsaker & Uchiyama,  1976). This may be a result 
of intensive predation, restricting them from reaching asymptotic 
body size. Alternatively, explosive growth may be a strategy to in-
crease fecundity (Barneche et al., 2018; Williams, 1966; Winemiller 
& Rose, 1993) and escape increased mortality at small size (Meekan 
et al., 2006; Miller et al., 1988). Mature short-lived clupeids spawn 
repeatedly in open water at intervals of several days (Clarke, 1987; 
Rogers et al., 2003).

Lantern fishes (Myctophiformes) are small bioluminescent 
species inhabiting mesopelagic and benthopelagic habitats (Catul 
et al., 2011). They perform diurnal migration and occupy resource-
rich epipelagic waters at night (Gartner, 1991). Despite spending a 
large amount of time in cold and resource-poor deep waters, their 
life-history traits are defined by epipelagic conditions, as their early 
development, feeding and reproduction take place in the epipelagic 
zone (Catul et al., 2011; Gartner, 1991). The lantern fishes with lifes-
pans shorter than a year are from warm-water regions and their 
distribution only borders temperate zones (Table 3). Lantern fishes 
contribute to the transfer of energy from the epipelagic habitat to 
deeper ocean zones by their diurnal migrations (Catul et al., 2011). 

F I G U R E  1   Distribution of short-lived 
(annual or multivoltine) fish species 
within Actinopterigian fish orders. Orders 
with confirmed presence of short-lived 
fish species are in red. Orders without 
confirmed presence of short-lived fish 
species are in black. Primary source of 
data is Rabosky et al., 2018https://fisht​
reeof​life.org/taxon​omy/. Figure was 
produced by Fig tree software v 1.4.4. 
(Rambaut, 2018)

https://fishtreeoflife.org/taxonomy/
https://fishtreeoflife.org/taxonomy/


8  |     ŽÁK et al.

They constitute an important food resource for marine predators 
(Cherel et al., 2010) and experience a similarly short lifespan to pe-
lagic clupeids (Table 3).

3.2.3 | Rarely reported groups of short-lived 
fish species

Several ray-finned fish orders may contain many species with maxi-
mum lifespans shorter than a year in the wild, but there is a paucity 
of reports given their limited access, low economic value and lower 
attractivity for applied and fundamental research. One noteworthy 
group is Asian Osmeriformes (especially families Plecoglossidae 
and Salangidae) – small fish species with amphidromous and land-
locked populations (Iguchi,  1996; Wu et  al.,  2011). These species 
are semelparous and adults die soon after spawning (Iguchi, 1996; 
Wu et  al.,  2011). Spawning is observed twice per year, because 
they comprise both autumn-spawning and spring-spawning popula-
tions (Iguchi, 1996; Wu et al., 2011). Most salangids appear to have 
maximum lifespans shorter than a year (Shouzeng & Dagang, 1994). 
Unfortunately, rigorous examinations are scarce or inaccessible to 
us, because they are published in national languages.

Some Galaxiiformes from Australia are confirmed to have 
maximum lifespans shorter than a year (Humphries,  1986; Pen 
et  al.,  1993). Specifically, two small species Galaxiella nigristriata 
(Galaxiidae) and Galaxiella pusilla (Galaxiidae) (Humphries, 1986; Pen 
et  al.,  1993) live in rivers, creeks and seasonally desiccating pools 
in river alluvia (Coleman et al., 2015; Humphries, 1986). These spe-
cies are able to survive habitat desiccation for an extended period 
of time in a wet mud or under logs and rocks (Coleman et al., 2015). 
They reproduce repeatedly at several-day intervals and die soon 
after maturity (Pen et al., 1993). This suggests that spawning effort 
combined with habitat duration contribute significantly to their mor-
tality (Humphries, 1986; Pen et al., 1993).

We found very few records of short lifespan from other 
fish orders (Table  4). For example, small species of seahorses 
(Syngnathiformes) are expected to have a maximum lifespan shorter 
than a year but, to our knowledge, no data from the wild are avail-
able. To our knowledge, there is only one frequently cited work 
which suggests Hippocampus zosterae (Syngnathidae) as having an 
annual lifespan (Strawn, 1958), but this study was not designed to 
specifically estimate longevity or maximum lifespan of this remark-
able fish. Seahorse otoliths are a poor marker of age which compli-
cates rigorous records of their natural lifespan (Do et al., 2006). It is 
surprising that we could not find any verified record of a short-lived 
characid (Characiformes). The ecology of many characids is similar to 
that of the short-lived fish species described above – they are small 
and live in resource-rich shallow waters with high predation pressure 
(Weitzman & Vari, 1988), which are apparently ideal conditions for 
the origin and maintenance of an annual (or shorter) lifespan. We 
believe that our failure to document quantification of their appar-
ently short lifespan is related to the paucity of data from the core of 
their distribution. Alternatively, we may have missed some reports, 

especially those published in local languages. There is also a rela-
tively high number of species from other taxa where maximum lifes-
pan shorter than a year is generally assumed but rigorous evidence is 
missing (Table S1). We believe that there are potentially many other 
species within the genera mentioned in Tables 2–4 which can also 
have a maximum lifespan of less than a year.

3.3 | Delimitation of annual and multivoltine 
fish species

It is customary to refer to short-lived fish species with a lifespan shorter 
than one year as “annual fish” (Berois et  al.,  2016; Liu et  al.,  2000; 
Myers,  1952; Wourms,  1967). In accordance with Etymonline.com 
(“Etymonline.com,” 2020) and the Cambridge Dictionary (“Cambridge 
Dictionary,” 2020), “annual” means something “happening once a 
year.” This is undoubtedly the case for fish species with maximum lifes-
pans longer than half a year (Table 2–4) and most appropriate for fish 
species with a life cycle that follows seasonal dynamics with one-year 
periodicity. We prefer to call these species “annual” rather than “uni-
voltine” (having a single generation per year, Corbet et al., 2006) but 
these terms could be used interchangeably depending on the context 
(lifespan—annual, reproduction—univoltine).

Several fish species complete multiple generations within a year 
and it is therefore difficult to term them annual species. This has 
been argued by Wilson J. E. M. Costa earlier and has led to his redef-
inition of Nematolebias (Rivulidae) Costa, 2002 from “annual killifish” 
to “seasonal killifish” (Costa, 2002). “Seasonal fish” is another term 
coined for killifish from seasonal pools (Pienaar, 1968), albeit with 
rare use in the literature. “Seasonality” in the term “seasonal fish/
killifish” correctly reflects the exclusively temporary occurrence of 
these species during the rainy season.

Many short-lived fish species complete their generations irre-
spective of any seasonality (Tables 2–4). For example Schindleria sp. 
occurs in tropical waters and it has been estimated that they complete 
up to nine generations within a year (Kon & Yoshino, 2002). Eviota 
spp. (Gobiidae) or Paedogobius kimurai can complete up to seven gen-
erations (Depczynski & Bellwood, 2006; Kon & Yoshino, 2002) and 
Encrasicholina dewisi (Engraulidae) can complete three generations 
per year (Hoedt,  2002; Milton & Blaber,  1993). More species with 
similar life histories are listed in Tables 2–4. For these fish species, 
we suggest using the term “multivoltine fish.” Voltinism refers to the 
number of generations (from birth to sexual maturity) produced by 
an organism per year. This term enables us to separate short-lived 
species into univoltine (limited to a single generation per year) and 
multivoltine (capable of completing more than one generation per 
year) (Corbet et al., 2006). Voltinism is a common concept in ento-
mology (Corbet et al., 2006; Southgate, 1981) and has also been used 
for short-lived mammals (Lambin & Yoccoz, 2001). We note that gen-
erations of a multivoltine species may be distinct (nonoverlapping) or 
overlapping (Bjørnstad et al., 2016). We encourage the use of terms 
“annual” (or “univoltine” when appropriate due to focus on the gener-
ation turnover) for short-lived fish species which complete their life 
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cycle and produce a single generation within a year. We propose the 
use of term “multivoltine” in relation to short-lived fish species with 
multiple generations (from hatching to maturity) within one year.

3.4 | Evolutionary ecology of short-lived fish species

3.4.1 | Environment

Typical environments inhabited by short-lived fish species are tropical 
or subtropical shallow warm waters with high productivity and high 
predation rates. For example, short-lived clupeids live and reproduce in 
warm resource-rich pelagic waters (Milton et al., 1995) and short-lived 
gobies are mostly found on coral reefs (Depczynski & Bellwood, 2006). 
Year-round high productivity and warm water support stable food re-
sources for early developmental stages of short-lived species occurring 
throughout the year (Kon & Yoshino, 2002; Morioka et al., 2014). Such 
conditions also support rapid developmental rates and early maturity 
(Munch & Salinas, 2009). Highly productive environments possess high 
biodiversity, often maintained by high predation pressure on early life 
stages (Caley, 1993; Connell, 1978). Short-lived fish species are small-
bodied and are predated throughout their lives, truncating their lifes-
pan (Caley, 1993; Depczynski & Bellwood, 2006).

Short-lived species from seasonal or resource-poor environments 
have developed coping mechanisms to deal with periods of unfavour-
able conditions. For example, annual killifish survive harsh periods as 
dormant embryos in dry mud (Furness, 2016). An alternative strategy 
for short-lived fish species is migration between productive and less 
productive environments (Gross et al., 1988). For example, myctophids 
undertake diurnal migration between deep and resource-poor me-
sopelagic and resource-rich epipelagic zones (Gartner,  1991). Adults 
of Asian amphidromous species spawn in rivers but juveniles feed in 
resource-rich marine and brackish waters (Gross et al., 1988; Shouzeng 
& Dagang, 1994). The absence of fish species with maximum lifespans 
of less than a year in cold climates and deep-water environments is 
likely a real phenomenon rather than simply due to a lack of verified 
records, because cold environments do not appear to support life his-
tories with a short lifespan (Munch & Salinas, 2009).

3.4.2 | Reproduction

A short lifespan produces strong selective pressure for early matu-
rity (Stearns, 1992; Williams, 1957). Nothobranchius furzeri matures 
at the age of 14 days posthatching in the wild (Vrtílek et al., 2018). 
In the paedomorphic Schindleria pietschmanni, adults have been 
confirmed at the age of 18 days (Whittle, 2003). Dwarf gobies from 
coral reefs are reported to mature within 1–2 months (Depczynski 
& Bellwood,  2006). In contrast, the maturity of semelparous spe-
cies is postponed and mostly coincide with the maximum lifespan 
(Iguchi, 1996; Shouzeng & Dagang, 1994).

Short-lived species are expected to invest heavily in repro-
duction to assure its success before death (Gunderson,  1997; 

Williams,  1966). Investment can be realized by offspring quan-
tity or intensive parental investment into survival of a small num-
ber of offspring. These divergent strategies are both common in 
short-lived fish species. Parental investment includes livebear-
ing as in Heterandria formosa (Poeciliidae) (Soucy & Travis,  2003), 
mouthbrooding as in Rhabdamia gracilis (Apogonidae) (Fowler & 
Bean,  1930), and egg fanning and paternal nest guarding in ma-
rine gobies (Sunobe, 1998). In contrast, pelagic short-lived clupeids 
(Milton & Blaber, 1993), small tropical freshwater cyprinids (Morioka 
et al., 2014; Morioka & Vongvitchith, 2014) and Australian galaxii-
forms (Humphries, 1986; Pen et al., 1993) repeatedly lay batches of 
eggs and do not invest in parental care. Semelparous Asian salangids 
invest in a single reproductive bout (Shouzeng & Dagang, 1994). The 
diversity of these reproductive strategies in short-lived species likely 
arises from the diversity of environments they inhabit (Winemiller 
& Rose, 1993), from seasonal savanna pools to ocean mesopelagic 
zones (Gartner, 1991; Reichard & Polačik, 2019), and from phyloge-
netic signals.

3.4.3 | Body size

Small species are generally assumed to have a short lifespan (Goatley 
& Bellwood, 2016; Hatton et al., 2019). Body size of the confirmed 
short-lived fish species in the current review spans from 14 mm in 
Brachygobius mekongensis (Gobiidae) to 220 mm in the piscivorous 
Austrolebias elongatus (Rivulidae) (Alonso et al., 2020). On the other 
hand, higher mortality in small species is not universal because vari-
ous factors such as the use of shelters (Munday & Jones, 1998) and 
experience with predators (Goatley & Bellwood, 2016) varies among 
species. The relationship between body size and longevity is com-
plex, but we confirm that short-lived fish species are generally small.

Small size may have ecological and metabolic benefits which 
contribute to maintenance of small body size in some species. 
Small species can use a wider range of shelters (Hernaman & 
Munday,  2005; Munday & Jones,  1998), have lower probabil-
ity of being detected by predators (Goatley & Bellwood,  2009), 
may utilize niches inaccessible to large fish species (Munday & 
Jones, 1998), can maintain denser populations per area than larger 
species (Ackerman et al., 2004). They also have relatively lower met-
abolic demands and their digestive tract can be more easily filled 
(Ackerman et al., 2004). The metabolic benefits of small body size 
may be the mechanism behind the apparent absence of a trade-off 
between instantaneous growth and reproduction seen in short-lived 
fish species (Depczynski & Bellwood, 2006; Milton & Blaber, 1993; 
Winterbottom & Southcott, 2008).

3.5 | The shortest-lived fish

An extremely short lifespan is a consequence of extreme conditions 
such as extreme predation pressure or ephemeral environments 
(García et al., 2019; Reichard & Polačik, 2019; Riesch et al., 2015). 
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The relatively common occurrence of maximum lifespan shorter 
than one year in natural populations of ray-finned fish is unique 
within vertebrates.

Eviota sigillata (Gobiidae) is currently considered as the shortest-
lived vertebrate with a maximum posthatching lifespan of 59 days 
in the wild. Our review identifies a number of other candidates for 
the shortest vertebrate lifespan. The most relevant is the group of 
small paedomorphic gobies such as S.  pietschmanni from Hawaii 
(with a maximum age of 1 month assessed from 148 individuals over 
a 3 year sampling period (Whittle, 2003)) or a much smaller species 
Schindleria brevipinguis (<9  mm, but age not assessed (Watson & 
Walker, 2004)). The method of Schindleria spp. age estimate, how-
ever, still remains to be verified.

Among nonpaedomorphic species, the turquoise killifish 
N.  furzeri from Africa is sexually mature in 2  weeks (Vrtílek, 
Žák, Pšenička, et  al.,  2018) and has a typical natural lifespan of 
weeks to months (Vrtílek, Žák, Polačik, et al., 2018). Prior to the 
report of a two-month lifespan in wild E.  sigillata (Depczynski & 
Bellwood,  2005), N.  furzeri was described as the shortest-lived 
vertebrate with its 3-month lifespan in captivity (Valdesalici & 
Cellerino, 2003). Here, we report our data from 30 wild popula-
tions of N. furzeri (see Supplementary methods) with a maximum 
lifespan from 25 to >129 days (Figure 2). Notably, 27% (N = 8) of 
wild N.  furzeri populations with adult fish died before 34 days – 
the age when E.  sigillata reaches sexual maturity (Depczynski & 
Bellwood, 2005). Short pool duration is not a constraint for pop-
ulation survival (Vrtílek, Žák, Pšenička, et  al.,  2018), which was 
supported by confirmation of viable populations in two repeatedly 
inundated pools which were previously inundated for less than 
34 days. This is likely due to early maturity (14 days, Vrtílek, Žák, 
Pšenička, et al., 2018) and high daily fecundity (60 eggs per day, 

Vrtílek, Žák, Blažek, et al., 2018) of N. furzeri. These results sug-
gest that N.  furzeri can sustain viable populations even in more 
time-constrained environments and can be considered as the 
shortest-lived nonpaedomorphic vertebrate.

The intrinsic limits of longevity in these remarkably short-lived 
species can be determined by comparison with captive survival. 
Unfortunately, the relevant data are available only for N.  furzeri 
where the maximum lifespan in captivity ranges from 3 to 17 months 
depending on population and holding conditions (Cellerino 
et al., 2016). Depczynski and Bellwood, (2006) note that Eviota spp. 
attain a longer maximum lifespan in captivity than in the wild and a 
captive lifespan of 2 years was reported for a closely related species 
Eviota nigriventris (Randall & Delbeek, 2009). We would like to high-
light that advances in our knowledge of species with extreme life 
histories will very likely lead to the discovery of other fish species 
with an even shorter lifespan.

3.6 | Decoupling maximum lifespan from ageing

It appears that the maximum lifespan of the majority of short-lived fish 
species is decoupled from ageing in their natural environment. This is 
because their lifespan is terminated by ecological constraints, preclud-
ing sufficient time for the development of senescent changes. Thus 
the growth asymptote is not reached in short-lived gobies and clu-
peids (Depczynski & Bellwood, 2006; Struhsaker & Uchiyama, 1976) 
and there is no detectable reproductive senescence in wild N. furzeri 
(Vrtílek, Žák, Blažek, et al., 2018) despite their clear reproductive se-
nescence in captivity (Žák & Reichard, 2021).

When kept in the protective environment of captivity, some 
species live long enough to develop senescence. It is probable that 
the lifespan extension induced by protective conditions in captivity 
is stronger in short-lived than long-lived vertebrate species (Tidière 
et al., 2016). Unfortunately, information related to the captive lifes-
pan of short-lived fish species is largely anecdotal. Among gobiids, 
Depczynski and Bellwood, (2006) mention that Eviota spp. live much 
longer in captivity than in the wild, and that they reach the senes-
cent stage. Coryphopterus personatus/hyalinus (Gobiidae) has a maxi-
mum lifespan of 195 days in the wild but can reach 4 years in captivity 
(Beeken, 2019). More rigorous evidence comes from short-lived cy-
prinodontiforms such as annual killifish (discussed in detail above) 
and H. formosa, that lives only up to 4 months in the wild (Soucy & 
Travis, 2003) but commonly for 14 months in captivity (Ala-Honkola 
et al., 2011). However, lifespan extension in captivity is far from uni-
versal. For example, benefits for semelparous species from a captive 
environment are negligible, because they ultimately die after repro-
duction (Iguchi, 1996). In addition, some short-lived fish species have 
a shorter maximum lifespan in captivity than in the wild or do not sur-
vive in captivity at all (e.g. Stolephorus spp., Thryssa spp. Encrasicholina 
spp., all Engraulidae (Hoedt, 2002; Milton et al., 1989)). Those short-
lived species which can be kept in captivity can provide important in-
sights into the intrinsic constrains of organismal longevity, as seen in 
annual killifish (Genade et al., 2005; Hu & Brunet, 2018).

F I G U R E  2   Lifespan of wild Nothobranchius furzeri populations 
in southern Mozambique. Median population lifespan is 50 days 
(95% confidence interval: 45–75 days). Populations inhabiting 
pools which dried prior to the death of all fish are depicted as black 
circles. Populations which disappeared prior to pool desiccation 
are present as black squares. Populations with inundated pools and 
viable populations at last sampling on 29 May 2016 (and unknown 
maximum lifespan) are marked as grey inverted triangles. Empty 
circle is a population with only juveniles. Grey vertical lines delimit 
common age at maturity of wild N. furzeri, age at maturity of Eviota 
sigillata, and maximum lifespan of Eviota sigillata
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3.7 | Caveats

Our knowledge of fish age is limited to a few species. Maximum lifes-
pan is known for less than 5% of almost 33,000 described fish spe-
cies (based on data from rfishbase (Boettiger et  al.,  2012; Froese & 
Pauly, 2019)). It is plausible that slightly more fish species have known 
longevity estimates, as rfishbase is still being developed and data from 
the Fish Base website (Froese & Pauly, 2019) converted to this pack-
age (Boettiger et al., 2012). This may contribute to the relatively low 
absolute number of reported short-lived fish species. Another caveat 
is that our knowledge of short lifespan is certainly biased towards 
economically and scientifically important species. A relatively small 
number of rigorous studies with small coverage over the ray-finned 
fish phylogeny prevents us from using a relevant phylogenetically 
corrected meta-analytic approach. Nonetheless, we believe that our 
sample size of more than 50 species makes the abovementioned gen-
eralizations on short-lived fish biology valid.

Longevity determination in short-lived species is often performed 
by counting the daily increments in otoliths (Pannella,  1971) and 
this is subject to some difficulties (see (Campana,  2001; Stevenson 
& Campana, 1992) for review). Thus, we list potential caveats in our 
overview (Table 1) which should reflect the variance in the accuracy 
of reported ages in Tables 2–4. In otolith readings, a higher number 
of increments may cause age underestimation due to problematic 
recognition of separate increments (Hoedt, 2002). Determination of 
age of first otolith increment formation is often absent in the species 
studied, but has only a small impact on maximum lifespan estimates, 
because it creates a bias of only a few days. The maximum lifespan of 
annual killifish from seasonal pools can be estimated from pool dura-
tion, as performed previously (Terzibasi Tozzini et al., 2013). However, 
annual killifish populations may disappear before the pool desiccates 
((Vrtílek, Žák, Polačik, et  al.,  2018), Figure 2) and in such cases, the 
natural killifish lifespan is overestimated. In general, we have included 
the longevity report from studies only in species where it was gener-
ally assumed that they usually have a maximum lifespan shorter than 
one year in their natural environment. We note that with an increase 
in the number of studies related to the natural lifespan of fish species 
some species can be detected as longer lived than currently assumed.

3.8 | Summary

The unpreceded species richness and ecological diversity of ray-
finned fish species results in a multitude of life-history strategies, 
including extremely short lifespans. The maximum natural lifespan 
of S.  pietschmanni from Hawai is 1  month, wild N.  furzeri popula-
tions live for 25–120+ days and E. sigillata lives for a maximum of 
2 months. These species represent the shortest maximum lifespans 
among vertebrates. An important outcome of this review is that 
short-lived fish species are not as rare as expected. We speculate 
that the relatively scarce evidence of extremely short lifespan in 
fishes arises from a lack of interest in age determination in small 
fish species rather than rarity of this life history. In light of this, 
the unverified evidence of short-lived fish species in characiform 

fishes and other small tropical species is especially surprising. This 
contrasts with the ecological significance of short-lived fish spe-
cies, which are essential in the transfer of energy in ecosystems 
where they occur (Brandl et  al.,  2019; Catul et  al.,  2011; Milton 
et  al.,  1991). They have economic importance as a food resource 
for human consumption (clupeids), are used as a baitfish (Milton 
et al., 1989), harvested for fishmeal production (Catul et al., 2011) 
and used in the ornamental fish trade (Genade et al., 2005; Randall 
& Delbeek, 2009). Last but not least, short-lived species which are 
easily bred in captivity are valuable models for evolutionary and 
biomedical research (Cellerino et  al.,  2016). We believe that our 
review contributes to more extensive studies into the biology and 
diversity of short-lived fish species.
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