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Abstract

There is increased concern about poor scientific practices arising from an excessive focus

on P-values. Two particularly worrisome practices are selective reporting of significant

results and ‘P-hacking’. The latter is the manipulation of data collection, usage, or analyses

to obtain statistically significant outcomes. Here, we introduce the novel, to our knowledge,

concepts of selective reporting of nonsignificant results and ‘reverse P-hacking’ whereby

researchers ensure that tests produce a nonsignificant result. We test whether these prac-

tices occur in experiments in which researchers randomly assign subjects to treatment and

control groups to minimise differences in confounding variables that might affect the focal

outcome. By chance alone, 5% of tests for a group difference in confounding variables

should yield a significant result (P < 0.05). If researchers less often report significant findings

and/or reverse P-hack to avoid significant outcomes that undermine the ethos that experi-

mental and control groups only differ with respect to actively manipulated variables, we

expect significant results from tests for group differences to be under-represented in the lit-

erature. We surveyed the behavioural ecology literature and found significantly more non-

significant P-values reported for tests of group differences in potentially confounding

variables than the expected 95% (P = 0.005; N = 250 studies). This novel, to our knowledge,

publication bias could result from selective reporting of nonsignificant results and/or from

reverse P-hacking. We encourage others to test for a bias toward publishing nonsignificant

results in the equivalent context in their own research discipline.

Introduction

The publication record of academics is a key factor determining funding and career success

[1]. This constant pressure to publish, and to do so in high-impact journals that strongly

favour significant results [2], has consequences for the extent to which published scientific

studies reflect the outcome of all original research. Key studies in many fields are not replicated

[3], and if they are, the original results are often not reproduced [4,5]. The latter phenomenon
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is widely known as the replication crisis [5,6]. One reason posited for low replicability is the

existence of a publication bias that favours reporting significant findings and suppressing non-

significant ones [7].

There are two main types of publication bias. First, selection bias occurs when studies either

go unpublished (‘file-drawer effect’) or statistical tests are not reported within published stud-

ies (selective reporting) (Fig 1A). It often reflects a tendency by authors, reviewers, and editors,

respectively, to preferentially submit, recommend, and accept studies with statistically signifi-

cant findings (usually P< 0.05) for publication [2,8]. It results in artificially increased esti-

mates of average effect sizes because some conducted studies with smaller effect sizes (i.e.,

larger P-values for a given sample size) are missing from the scientific literature and excluded

from meta-analyses or synthetic reviews. Second, P-hacking occurs when effect sizes are

inflated because of how data are collected or analysed (Fig 1B). It involves the active, although

not necessarily conscious, manipulation of data, data collection, or statistical tests [9,10] to

obtain a statistically significant result for a favoured explanatory variable. This can occur by,

for example, stopping a study as soon as a significant result is obtained rather than collecting a

prespecified sample size, removal of outliers, and inclusion or exclusion of terms from an ini-

tially chosen statistical model. Although there are methods to detect missing, unpublished

results that arise because of selection bias (for example, the use of funnel plots of effect sizes

that should be symmetric) [11], correcting for P-hacking is notoriously difficult. This is partly

because the various types of P-hacking practices will have different effects on the distribution

of P-values that result when a pool of studies are considered, some of which have been P-

hacked [12].

Well-conducted experimental studies allow researchers to reduce the effect of confounding

factors that might otherwise hinder the ability to attribute causal effects to manipulated vari-

ables. We define a confounding variable as an unmanipulated variable that might affect the

interpretation of an experiment if it differs between control and treatment groups or among

different treatment groups. For example, when studying the effect of manipulating testoster-

one levels on male mating success, male body size could be considered a confounding variable

because larger males tend to be more attractive to females in many species [13]. There are two

main approaches to minimise the effect of confounding variables in experiments: balanced

Fig 1. Frequency distribution of numerical P-values (P-curve). Two hypothetical examples of P-curves show the expected distribution if (a) selection bias is

present or (b) certain types of reverse P-hacking occur (see [12]). Data collected from articles testing the effect of confounding variables between treatment(s) and

control groups are shown in (c). In (c), darker red points represent a higher frequency of P-values/bin among the randomised datasets. The horizontal red line

denotes the theoretical even distribution across 20 bins (188 articles in 20 bins = 9.4 articles/bin). The grey rectangles emphasize intervals of interest in the two

hypothetical scenarios. We only used P-values presented to at least two decimal places. The full data file of the 1,805 articles consulted and the 250 from which data

were extracted and the R scripts used for the analysis and to generate the figures are available at https://figshare.com/s/f3bb7dfefdaa8976d3a1 or https://osf.io/au7yc/.

https://doi.org/10.1371/journal.pbio.3000127.g001
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designs [14] and randomisation [15]. In a balanced design, a key confounding variable is pur-

posefully distributed across treatment groups to avoid differences in group means. This is usu-

ally done by sequentially assigning subjects to treatment groups based on their rank for the

confounding variable (for example, from the largest to the smallest individual). Randomisa-

tion, on the other hand, is when subjects are randomly assigned to different treatment groups.

Whichever approach investigators use, one might then expect them to test for differences

among groups in the confounding variable to ensure and demonstrate that they have success-

fully eliminated it as a source of between-group variation in the focal outcome variable [16].

Of course, by chance alone, the difference among groups in a confounding variable can be suf-

ficiently large that it is statistically significant. Given random assignment of subjects, the prob-

ability of significance is 5% if we use the typical significance level of 0.05 employed in

biological studies [17]. The probability of significance for the main confounding variable is far

smaller for experiments with a deliberately balanced design [14], although, of course, other

confounding variables that are uncorrelated with the main confounding variable are still being

randomly assigned. Randomisation is therefore less effective than a balanced design, but it is

still the most common approach to assigning subjects to experiments in ecology [18,19] and is

the gold standard in randomised control trials in medicine [17].

Significant among-group differences in confounding variables are seen to potentially under-

mine the conclusions of an experimental study [16,17]. Researchers might therefore be tempted

not to report significant differences in confounding variables between treatment(s) and control(s)

to avoid criticism from reviewers. This could lead to selective reporting of nonsignificance tests.

Or researchers might manipulate data collection or analyses (for example, by including or remov-

ing some subjects from a dataset) until group differences in confounding variables become statisti-

cally nonsignificant. We refer to this type of active data manipulation as ‘reverse P-hacking’. Here,

we are specifically interested in those forms of P-hacking that will lead to slight shifts in P-values

with cumulative testing until the ‘desired’ threshold is exceeded (see [9,12]) (see Fig 1).

We test for the presence of selective reporting of nonsignificance and/or reverse P-hacking,

using articles about behavioural ecology. We chose this discipline because it is the one with

which we are most familiar, which facilitated identifying suitable papers. If researchers hon-

estly report all conducted statistical tests for confounding variables between treatment and

control groups after random assignment of subjects, we expect 5% to report a statistically sig-

nificant difference.

Assessing the extent of selective reporting of negative results and

reverse P-hacking in the literature

We preregistered our study design (https://osf.io/xg6ja/), and subsequent modifications were

explicitly noted. The full details of the database are provided in S1 Text. In brief, we extracted

data from 250 of 1,805 articles examined from three top behavioural ecology journals (1990–

2018) that reported on experimental studies. We recorded all P-values or statements about the

significance of results from tests of whether the mean value of confounding variables differed

between treatment(s) and control groups. To be conservative, we treated an article as ‘signifi-

cant’ if it contained at least one significant outcome. We then tested the null hypothesis that

5% of articles that test for such a difference will report a significant P-value (i.e., P< 0.05) (Fig

1A). To investigate reverse P-hacking, we examined P-curves (Fig 1B) [10], using all P-values

presented to two or more decimal places (188 articles, 427 P-values). We tested whether there

are more P-values in the bin closest to the significance threshold (0.05 to< 0.10) than in the

next bin (0.10 to< 0.15) (Fig 1B [9]; but see [12]). We iteratively performed the test by ran-

domly drawing one P-value per article. We present the median P-value.
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The 250 articles with usable data contained 510 tests. Of these articles, only four (1.6%)

reported at least one significant difference between the treatment and control group in the

mean value of a confounding variable. This is significantly fewer articles than the expected 5%

(i.e., 12.5 articles) that should occur in the absence of publication bias (exact binomial test:

CI = 0–0.036, P = 0.005). Furthermore, two of the four articles with significant test outcomes

also had several nonsignificant test outcomes (one article had two tests, and the other had

eight tests). If we repeatedly randomly sampled a single test per article, this leads to an even

lower presence of significant findings (predominantly only two articles [0.8%] with significant

tests, CI = 0–0.025, P< 0.001).

The number of P-values in the 0.05 to< 0.10 bin immediately above the significant thresh-

old was not significantly larger than the number in the adjacent 0.10 to< 0.15 bin (exact bino-

mial tests, median P = 0.989, standard deviation [SD] = 0.036, Fig 1C). The pattern predicted

given the type of reverse P-hacking we were testing for (see [9,12]) was therefore not seen (see

prediction in Fig 1A). Instead, in addition to there being significantly fewer than expected P-

values below 0.05 (see Methods for analysis below), there were equally few P-values in the 0.05

to 0.10 bin (Fig 1C). Based on this pattern (see Fig 1B), there therefore appears to be selective

reporting. However, because there are fewer than expected studies with P-values below 0.10

rather than 0.05, the pattern suggests a bias against reporting P-values below 0.10.

There was no difference in the year of publication between articles that did or did not report

at least one significant difference between the treatment and control group in the mean value

of a confounding variable (independent sample t test: t247 = 0.408, P = 0.342; significant: year

2004.5 ± 3.1, nonsignificant: year 2005.9 ± 0.5; mean ± SE, n = 4, 246). This test has little statis-

tical power (15%) to detect a medium-strength effect (d = 0.5) [20], but we include it because it

was part of our preregistered study design.

Failure to identify a confounding variable can be a serious flaw if it has a strong causal effect

on the focal outcome of an experiment (but see [17]). Depending on the direction of a differ-

ence in the confounding variable between the control and treatment group, it could either

inflate or obscure the true effect of an experimentally manipulated variable. This is most likely

to be an issue when the confounding variable is strongly related to the measured outcome of

an experiment (for example, body size is correlated with life span in dogs). We compiled P-val-

ues (or statements about significance) from statistical tests of differences between treatment

and control groups in the mean value of confounding variables. Given no true effect because

subjects are randomly assigned to groups, 5% of tests should report a significant difference

when α = 0.05 (Fig 1A). We found, however, that fewer tests than expected reported a signifi-

cant difference (P = 0.005). Many studies have documented a selection bias against nonsignifi-

cant results [2,4,11], but, to our knowledge, ours is the first to present evidence of a selection

bias for nonsignificant results.

Why are there so few significant results?

Selection bias can arise because of a file-drawer effect (i.e., studies go unpublished) or selective

reporting. Although the former is possible, we suspect that researchers would still attempt to

publish studies even if a confounding variable differed significantly between the control and

treatment group. Reviewers might, however, occasionally block publication on the grounds

that the allocation of subjects means that causal inferences about a manipulated variable are no

longer possible (although one could, of course, statistically control for the confounding vari-

able). We therefore focus on selective reporting as the main reason for a dearth of significant

results. While selectively reporting goes against recent calls for research transparency (for

example, [20]), the failure to report the outcome of a test need not mean that investigators
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purposefully omitted results that undermine a study’s validity. Based on reading the Methods

of many articles, it is clear that some studies did not report a test for a difference between treat-

ment(s) and control groups in a confounding variable despite the data existing (i.e., confound-

ing variables were measured). We estimate there were up to 371 such studies, but we note that

this is a subjective claim, and we may have incorrectly classified some articles. A lack of test

results could have occurred because the relevant statistical test was not performed or because

the test output was not reported. It is impossible to differentiate between these possibilities,

unless there is selective reporting such that missing P-values are unevenly distributed between

0 and 1.

The fact we observed too few studies with P-values less than 0.05 implicates the selective

reporting of nonsignificant results. The magnitude of this type of bias could, however, be

underestimated (and might sometimes even go undetected) when examining P-curves if there

is additional under-reporting of precise, nonsignificant P-values. Omission of nonsignificant

results might stem from a perception that they are uninteresting [2, 4, 6, 21]. Indeed, some

studies in our dataset tested up to 17 confounding variables and then provided statements like

‘all NS’ or ‘all P> X’ rather than precise P-values. These results had to be excluded from the P-

curve, which required that P-values were stated to two decimal places. The net effect of the

inclusion of results reported as ‘P> 0.05’ or ‘NS’ would be to increase the frequency of studies

with P-values above 0.05. In addition, in ‘P greater than’ statements, the most frequent P-value

used was 0.05. This might further explain why we observed so few exact P-values in the 0.05

to< 0.10 bin (Fig 1C). Researchers might prefer not to provide exact P-values when they lie

close to 0.05 (i.e., below 0.10) because such findings are often described, albeit erroneously, as

‘marginally significant’. Crucially, however, if all nonsignificant results are under-reported, as

occurs with conventional selective reporting, the P-curve would reveal an excess of significant

P-values. We found the opposite. There is high incentive to publish completed experiments,

and we suggest that not reporting significant tests for a confounding variable is the least labori-

ous way to handle such an unwelcome result.

Reverse P-hacking is another reason for fewer than expected significant results, even if all

P-values that are calculated are then published. It is, however, a challenge to determine

whether it is occurring (see responses to [9]). Our approach to test for its existence can be illus-

trated by considering the complementary phenomenon of P-hacking when researchers are

rewarded for obtaining significant results. Theory states that a P-curve is flat if there is no true

effect and right skewed if there is a nonzero true effect (i.e., small P-values are more common).

One can test for P-hacking by only looking at significant P-values because within this portion

of the P-curve, there should be no selection bias. One can then test if the curve here is left

skewed, with fewer highly significant than barely significant results, indicative of P-hacking

[10,22]. This would, however, require extreme levels of P-hacking if there is actually a nonzero

true effect. As such, it has been suggested that one can simply test if there are more P-values

immediately below 0.05 than further away (for example, 0.045 to< 0.050 versus 0.040

to< 0.045) as evidence for P-hacking (for example, [9]; but see [12]).

Here, we pursued a similar finer-scale P-curve analysis to test for reverse P-hacking. We

compared the frequency of P-values in two equal-sized bins immediately above the 0.05

threshold (Fig 1B and 1C). We predicted that there would be more in the 0.05 to< 0.10 bin

than the 0.10 to< 0.15 bin. This assumes that an initially significant P-value is incrementally

shifted toward a larger value as, for example, individual data points are selectively added or

removed from a large dataset. If a researcher stops reverse P-hacking once the observed P-

value becomes nonsignificant, it is then likely to fall into the 0.05 to< 0.10 bin. This prediction

was not supported. There were actually fewer P-values in the 0.05 to< 0.10 than 0.10 to< 0.15

bins (Fig 1C). In hindsight, we suggest that many forms of reverse P-hacking will shift initially
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significant values well beyond the 0.05 to< 0.10 bin, and the exact distribution of reverse P-

hacked values is thus hard to predict. A comparable reservation has been made about the dis-

tribution of P-hacked values (i.e., that they will not preferentially lie immediately below 0.05;

[12]). It is intriguing to note, however, that we also documented too few values in the 0.05

to< 0.10 bin (Fig 1C). These values are often, albeit incorrectly, described as ‘marginally sig-

nificant’, raising the possibility that they are disliked by researchers wanting to present an

image of their experiment as having eliminated differences in confounding variables between

control and treatment groups. Selection bias and/or reverse P-hacking could therefore explain

the general lack of P-values below 0.10.

Summary and conclusions

Although there was a strong signal of missing P-values below 0.10, we cannot determine

whether this is due to selective reporting, reverse P-hacking, or both. The most parsimonious

explanation is selective reporting, but we cannot exclude reverse P-hacking. We collected data

from behavioural ecology articles based on our own expertise in this discipline, but there is no

a priori reason to believe that behavioural ecologists treat confounding variables any differ-

ently than researchers in other disciplines (for example, [16,17]). Regardless of the proximate

mechanism, we have provided further evidence by taking a novel, to our knowledge, approach

that poor research practices arise from an obsession with P-values and discriminating between

‘significant’ and ‘nonsignificant’ findings (see also [2,4,6,9,11,22]). A focus on P-values rather

than effect sizes is clearly problematic. We encourage others to test for reverse P-hacking and/

or a selection bias against nonsignificant results in their own research fields in equivalent tests

of confounding variables. This will allow us to assess the generality of the pattern we observed.

Finally, it should be noted that the interpretation of recent studies is unlikely to be affected by

group differences in confounding variables. Earlier studies often used univariate tests (for

example, t tests or Mann–Whitney U tests) that ignored major confounding variables (i.e.,

implicitly assumed that they did not differ between the control and treatments group). In con-

trast, recent studies usually add potential confounding variables as covariates that are ‘cor-

rected for’ before examining the effect of an experimental intervention.

Supporting information

S1 Text. Contains details of the preregistration of the study, links to data files and an R

script, and details of the protocol for data collection and analysis.

(DOCX)
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