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A B S T R A C T

In natural populations, individuals experience daily fluctuations in environmental conditions that synchronise
endogenous biorhythms. Artificial alterations of environmental fluctuations can have negative consequences for
life history traits, including lifespan. In laboratory studies of aging, the role of fluctuating temperature is usually
overlooked and we know little of how thermal fluctuation modulates senescence in vertebrates. In this long-
itudinal study we followed individually-housed turquoise killifish, Nothobranchius furzeri, from two thermal
regimes; ecologically relevant diel fluctuations (20 °C - 35 °C) and stable temperature (27.5 °C), and compared
their survival, growth and reproduction. Fish experiencing fluctuating temperatures had a longer median life-
span but reached smaller asymptotic body size. Within-treatment variation indicated that extended lifespan in
fluctuating temperatures was not causally linked to decreased growth rate or smaller body size, but occurred
solely due to the effect of thermal fluctuations. Male body size was positively associated with lifespan in stable
temperatures but this relationship was disrupted in fluctuating thermal regimes. Females exposed to fluctuating
temperatures effectively compensated egg production for their smaller size. Thus, there was no difference in
absolute fecundity between thermal regimes and body-size corrected fecundity was higher in females in fluc-
tuating temperatures. Overall, despite a brief exposure to sub-optimal thermal conditions during fluctuations,
fluctuating temperature had a positive effect on survival and reproduction. These results suggest that the ex-
pression of life history traits and their associations under stable temperatures are a poor representation of the
relationships obtained from ecologically relevant thermal fluctuations.

1. Introduction

Environmental conditions modulate most organismal functions,
from gene expression to behaviour (Fraser et al., 1993; Podrabsky and
Somero, 2004). Temperature, light intensity and food availability
fluctuate in predictable daily and seasonal cycles and organisms adapt
their endogenous biorhythms to optimize performance (Claireaux and
Lefrançois, 2007; Dillon et al., 2016). On the other hand, environmental
fluctuation exposes organisms to periods of suboptimal conditions
which may have negative consequences for survival (Zhang et al.,
2018). Artificial desynchronization of environmental fluctuation may
cause stress with long-term, senescence-related consequences (Almaida-
Pagán et al., 2018). While high levels of stress may induce immediate
mortality, mild stress typically has life-extending effects (Gems and
Partridge, 2008). Organisms that have evolved under chronic en-
vironmental fluctuation are expected to possess efficient stress-coping

adaptations (Angilletta, 2009; Kern et al., 2015).
Temperature has a fundamental effect on lifespan and low body

temperature is associated with longer lifespan in both ectotherms and
endotherms (Flouris and Piantoni, 2015; Keil et al., 2015). In ec-
tothermic vertebrates, chronic exposure to sub-optimal temperatures
(i.e. temperatures outside the range of preferred body temperatures
(Gvoždík, 2018)) has been studied particularly in fishes (Keil et al.,
2015), confirming their role in lifespan extension. However, the effect
on other life history traits was negative as a consequence of lower
metabolism and slower development rate (Angilletta, 2009). The role of
fluctuating temperatures on lifespan is less clear (Colinet et al., 2015).
Fluctuating temperatures and their effect on lifespan have been studied
primarily in invertebrates such as nematodes, crustaceans (Daphnia sp)
or insects and variously demonstrated lifespan extension, reduction or
no effect (Cedergreen et al., 2016; Colinet et al., 2015; Schwartz et al.,
2016). The lifespan modulating effect of fluctuating temperature
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remains largely untested in vertebrates, while both negative and posi-
tive effects of fluctuating temperature have been demonstrated on de-
velopmental rate (Kern et al., 2015; Niehaus et al., 2012), growth rate
(Diana, 1984; Vondracek et al., 1988) and reproduction (Boulé and
Fitzgerald, 1989; Podrabsky et al., 2008).

Growth and reproduction are commonly linked to survival via
trade-off in resource allocation (Kirkwood, 1977; Lee et al., 2013),
antagonistic pleiotropic genetic effects (Williams, 1957) or positive
pleiotropic effects (Maklakov et al., 2015). From an evolutionary per-
spective, it is important to study growth and reproduction together with
survival to obtain more complete information on the functional senes-
cence of an organism (Lemaître and Gaillard, 2017; Monaghan et al.,
2008). At least in insects, there appears to be no consistent link between
survival and other life history traits across studies that exposed animals
to fluctuating temperatures (reviewed in Colinet et al. (2015)). This is
likely due to wide variation in the distance between the range of pre-
ferred body temperatures and the fluctuations tested, unpredictability
of extrapolation from studies in stable temperature, and species-specific
thermal sensitivity of traits examined (Colinet et al., 2015; Kingsolver
et al., 2008; Niehaus et al., 2012). To our knowledge, the extent to
which fluctuating temperatures contribute to modification of lifespan
and its association with fundamental life history traits in vertebrates is
unknown.

In the present study, we used the short-lived turquoise killifish
Nothobranchius furzeri, a promising vertebrate model for aging (Hu and
Brunet, 2018), to examine the role of fluctuating temperature on ver-
tebrate lifespan and its relationship to thermally sensitive life history
traits – growth and reproduction.

2. Material and methods

2.1. Study species

The turquoise killifish Nothobranchius furzeri is adapted to thermally
challenging ephemeral savanna pools in south-east Africa and has a
naturally short lifespan of several months (Reichard and Polačik, 2019).
During the peak season of killifish abundance, water temperature in
ephemeral savanna pools fluctuates in an asymptote of 15–20 °C daily,
usually from 22 °C in the early morning to 38 °C in late afternoon (Žák
et al., 2018). Perhaps as an adaptation to a thermally unstable en-
vironment, the turquoise killifish has wide range of preferred body
temperature, from 20 to 30 °C (Žák et al., 2018). The species is easily
bred in the laboratory under a stable temperature regime, with a re-
commended breeding temperature of 25–28 °C (Genade et al., 2005;
Polačik et al., 2016). In the laboratory, lowering the water temperature
from 25 °C to 22 °C extended the median lifespan of N. furzeri by 11%
(from 9 to 10 weeks) and delayed the onset of molecular and

behavioural markers of senescence (Milinkovitch et al., 2017;
Valenzano et al., 2006). Nonetheless, laboratory studies used chronic
exposure to lower temperature only, overlooking the fact that such
conditions are unnatural for this species.

2.2. Fish maintenance

We used wild-derived population MZCS 222 (Cellerino et al., 2016)
of turquoise killifish kept at the accredited breeding facility at the In-
stitute of Vertebrate Biology of the Czech Academy of Sciences. Fish
were hatched on 19 February 2018 following a standard breeding
protocol (Polačik et al., 2016). During the first month after hatching,
fish were kept under stable temperature of 27.5 °C ± 1 °C in two 60 L
tanks. Fish were fed ad libitum 2–3 times per day, initially with live
brine-shrimp nauplii and gradually (mixed feeding for 7 days) weaned
onto frozen bloodworms (Chironomidae) as they grew larger.

At the age of 5 weeks (age at maturity of all individuals), 84 fish (40
females, 44 males) were individually housed in 2 L tanks within two
independent recirculating systems (Aquamedic, Germany, www.aqua-
medic.de). Selection of experimental fish from initial stock was hap-
hazard and fish from both original tanks were used across both treat-
ments. Individually housed fish were fed ad libitum (amount consumed
within 5min) once per day between 9 and 10 am on thawed frozen
bloodworms. Water conductivity was kept between 250 and 350
μS× cm−1 and the light regime was 14L:10D.

We used two treatments; stable temperature and fluctuating tem-
perature, for a total period of 78 weeks. Stable temperature was
maintained at 27.5 ± 1 °C (mean ± SD) throughout the experiment.
Fluctuating temperature ranged from 20 °C ± 1 °C in early morning to
35 °C ± 1 °C in late afternoon (Fig. 1, Supplementary Fig. S1). The
limits for fluctuating temperature were chosen to reflect the diurnal
change in water temperature that killifish experience in the wild (Žák
et al., 2018). The fluctuating temperature treatment was provided in
one recirculating system by a combination of an aquarium chiller
(TECO TR 10, Italy, www.tecoonline.com) and three aquarium heaters
(2× 200W and 1× 100W, Eheim/Jäger, Wüstenrot, Germany). The
second recirculating system was used for stable temperature (regulated
by one 100W heater, Eheim/Jäger, Wüstenrot, Germany). One tem-
perature datalogger (HOBO Onset Computer, UA-002-64, Bourne, MA,
USA) monitored temperature in the middle rack of each recirculating
system. The consistency of thermal conditions and water parameters
was checked every two weeks and the set-up of chiller or heaters was
modified as necessary to maintain the same thermal regime irrespective
of minor seasonal changes in room temperature over the 78week
duration of the experiment (room temperature ranged between 25 °C
and 29 °C).

Fig. 1. Water temperature over a
period of 11 days in stable (blue line)
and fluctuating (orange line) tempera-
ture treatments. Grey areas represent
the dark period of the day. A short time
period was chosen for clear visualiza-
tion. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of
this article.)
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2.3. Data collection

Fish health status and survival were monitored daily. Fish body size
was measured every week from the age of 29 days to the age of
300 days and every two weeks until the age of 466 days, using photo-
graphs taken in a plastic container with shallow water and a scale on
the bottom (resolution of 1mm). Photographs were imported to ImageJ
v 1.46 (imagej.nih.gov) and body size was measured as Standard Length
(from tip of the snout to the end of caudal peduncle). Individual specific
growth rate (SGR, % SL per day) was estimated from the first 30 days of
the experiment, when growth rate was highest and linear (Blažek et al.,
2013, Fig. 4). The SGR was calculated as (lnSL2 – lnSL1)× (100/t)
where SL2 is terminal body length, SL1 is initial body length and t is the
length of time interval in days (Talbot, 1993).

Reproductive parameters were estimated monthly from spawnings
in 2 L plastic containers with a 5mm layer of fine sand as a spawning
substrate. A pair of fish was placed in the container and allowed to
spawn for 2 h, which is sufficient for release of all ovulated eggs from
female ovaries (Polačik et al., 2016). The same pairings were used
throughout the study, though when one individual from a pair died, it
was replaced by another fish from the same treatment that lost its
partner. At time of spawning termination, all pairs were moved back to
recirculating system in a haphazard mode (alternating pairs from stable
and fluctuating temperature) within 25min. The periodicity of
spawning was every week but eggs were counted for analysis only once
per month. Weekly spawnings were performed to prevent egg retention
in ovaries (Polačik et al., 2014), a common problem in female N. furzeri
when housed in isolation (Polačik et al., 2016). In the present experi-
ment, one female (4.5%) from stable temperature and three (13.6%)
females from fluctuating temperature were suspected to have died due
to inability to release their eggs (a significant reduction from 80% re-
ported by (Polačik et al., 2014)). Those fish were omitted from the
analysis of reproductive traits. The total number of eggs (fecundity;
proxy of female reproductive output), number of fertilized eggs (ferti-
lity; proxy of reproductive fitness) and fertilization rate (proportion of
fertilized eggs; proxy of oocyte quality; in N. furzeri fertilization rate is
dependent on quality of eggs and almost independent of male traits,
Polačik et al., 2016) were determined by sieving eggs from the sand
24 h after removal of parental fish from containers. Fertilized eggs were
determined by the presence of the perivitelline space (Polačik et al.,
2016).

2.4. Statistical analysis

Median lifespan was compared between treatments using a non-
parametric Log-rank test, including sex-specific response. All survival
curves were visualized by Kaplan-Meier plots.

The association between lifespan and other life history traits was
analysed using a sex-specific Gamma Generalized linear model (GLM)
with a log-link function. Sex-specific models were used because re-
productive parameters - early fecundity (number of eggs after 30 days
under each thermal regime) and fertilization rate (maximum fertiliza-
tion rate achieved by a female) - were only recorded for females. Early
fecundity, fertilization rate, thermal regime and body length at 59 days
(period including both juvenile growth and the effect of thermal regime
on growth) were included as predictors of female lifespan. SGR was not
used for females, because it was collinear with body length (variance
inflation factor > 4). For males, lifespan was modelled as a function of
thermal regime, body length at 59 days and SGR during the first month
of the experiment. In both models for males and females, all possible
two-way interactions were included in the full model and removed
when insignificant. Given a significant interaction between treatment
and body size in males (Supplementary Table S2), thermal regime-
specific analyses were conducted.

In addition, as an evaluation of disposable soma theory, we com-
pared how the relationship between lifetime fecundity and female

lifespan varies between thermal regimes using Gamma GLM with life-
span as a response variable and lifetime fecundity in interaction with
thermal regime as explanatory variables.

The growth trajectory was compared between thermal regimes with
a sex-specific Gaussian Generalized Additive Model (GAM). Body size
was the response variable, age was a smoothed predictor with the basis
dimension 10 (k= 10) and thermal regime specified smoother
(by= thermal regime). Thermal regime was added as a parametric
predictor and Individual ID was used as a random factor. Specific
growth rate from the first month in the experiment was compared using
a GLM with SGR as a response variable and thermal regime in inter-
action with sex used as predictors. We also compared initial body size of
fish between thermal regimes using a GLM with thermal regime and sex
as explanatory variables.

Fecundity was analysed using a negative-binomial GAM with the
number of eggs as a response variable and age (continuous, in days) as a
smoothed parameter (k= 7). The addition of thermal regime-specific
smoothers was not needed (see Results). Parametric terms were thermal
regime and body size. Female ID was specified as a random factor. The
same model structure was used for fertility analysis, with number of
fertilized eggs used as a response variable instead of total number of
eggs.

Fertilization rate was analysed with a binomial GAM, with raw bi-
nomial data as a response variable (number of fertilized eggs, number
of unfertilized eggs), age as a smoothed predictor (k= 5, with k chosen
on the basis of superior model fit, as estimated by AIC) and thermal
regime as a parametric predictor. Female ID was specified as a random
factor. The model was accounted for data overdispersion.

All procedures were performed in R 3.6.1. environment using sur-
vival 2.44.1.1, lme4 1.1.21, mgcv 1.8.28, splines 3.6.1, car 3.0.4 and ef-
fects 4.1.3 packages (Bates et al., 2015; Fox and Weisberg, 2019; R Core
Team, 2019; Therneau and Grambsch, 2000; Wood, 2017).

3. Results

3.1. Effect of thermal regime on lifespan

Fish in fluctuating temperatures had a 93% longer median lifespan
than fish kept in stable temperature (log-rank, χ12= 6.3, p=0.010,
N=84, Fig. 2a). A longer median lifespan in fluctuating temperatures
was recorded in males (χ12= 5.4, p=0.020, N=44) but this differ-
ence, although numerically larger, was non-significant in females
(χ12= 1.5, p=0.200, N=40, Fig. 2b). Overall, median lifespan did
not differ significantly between males and females within thermal re-
gimes (fluctuating: χ12= 3.5, p=0.06, N=42; stable: χ12= 0,
p=0.90, N=42).

3.2. Effect of thermal regime on lifespan correlates

In females, thermal regime did not affect the relationship between
lifespan and fundamental life history traits. A positive association be-
tween lifespan and fertilization rate (χ12= 9.23, p=0.002,
Supplementary Table S1, Fig. 3a) was congruent across both thermal
regimes (χ12= 1.41, p=0.234, N=35). There was no effect of body
size, early fecundity or their interaction with thermal regime on female
lifespan (Fig. 3a, Supplementary Table S1).

There was positive relationship between lifespan and lifetime fe-
cundity in females, with steeper increase detected in stable than in
fluctuating temperature (Gamma GLM, lifetime fecundity:thermal re-
gime interaction, χ12= 10.84, p=0.001, N=35, Supplementary Fig.
S2, Table S2).

In males, a positive relationship between lifespan and body size was
detected in stable temperature (χ12= 5.01, p=0.025, N=21) but not
in fluctuating temperature (χ12= 0.022, p=0.873, N=21, Fig. 3b,
Supplementary Tables S3, S4). There was no effect of SGR on male
lifespan (Supplementary Tables S3, S4).
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3.3. Effect of thermal regime on growth

Overall, fish in fluctuating temperature were smaller than fish in
stable temperature (Gaussian GAM, males: F1,1008= 7.08, p=0.009,
N1=44 fish, N2=1066 measurements; females: F1,973= 41.33,
p < 0.001, N1=40, N2= 1036; Fig. 4, Supplementary Table S5).
After the first month, female SGR was 53% lower in fluctuating tem-
perature than in stable temperature. In males, the reduction in SGR
between fluctuating and stable temperatures was 20% (thermal re-
gime:sex: ANOVA, F1,77= 5.31, p=0.024, N=84, Supplementary
Table S6). At the beginning of the experiment, fish in both thermal
regimes had similar body size (treatment: F1,82= 0.196, p=0.660,
N=84, Supplementary Table S7).

3.4. Effect of thermal regime on reproductive traits

Relative fecundity was 80% higher in females in fluctuating tem-
perature (Neg.Bin. GAM, χ12= 7.93, p=0.005, N1=35, N2= 223;
corrected for female body size: χ12= 8.68, p=0.003). Females in
fluctuating temperature effectively compensated their egg production
despite their smaller size and, overall, there was no significant differ-
ence in absolute fecundity between thermal regimes (χ12= 0.74,
p=0.391). The age-related pattern of relative fecundity (age:
edf= 3.736, χ2= 127.19, p < 0.001; Fig. 5a) was similar in both
thermal regimes (model with treatment-specified smoothers
AIC= 1836, without treatment-specified smoother AIC=1832). Like-
wise, fertility did not differ between the treatments (Supplementary
Table S8). There was no significant difference in fertilization rate be-
tween thermal regimes (Binomial GAM: F1,177= 0.188, p=0.665;

Fig. 2. Different survival of Nothobranchius furzeri in stable (blue, N=42) temperature and in fluctuating (orange, N= 42) temperature a). Survival was longer in
fluctuating temperature (p=0.010). Sex and thermal regime specific survival of Nothobranchius furzeri b). Both survival plots are Kaplan-Meier plots. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Life history traits with significant sex-specific association with lifespan. (a) Positive association between fertilization rate and lifespan in females (p=0.002,
N=35). (b) Treatment-specific association between body size and lifespan in males (stable: p=0.025, N=21; fluctuating: p=0.873, N=21). The curves were
fitted by Gamma Generalized linear models. Shaded areas represent 95% confidence intervals. Filled circles denote raw data.
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N1=35, N2= 209); the data demonstrate a decrease in fertilization
rates in both treatments, followed by a short terminal increase caused
by the longest surviving females (edf= 3.852, F= 8.291, p < 0.001,
Fig. 5b). A treatment-specific smoother for age was not needed
(ΔAIC= 9).

4. Discussion

Previous studies have detected a detrimental effect of stable tem-
perature on early development of ectothermic vertebrates (Ashmore
and Janzen, 2003; Niehaus et al., 2012). Using the short-lived fish
Nothobranchius furzeri, we demonstrated that stable temperature shor-
tened lifespan and decreased relative fecundity, but increased growth

rate compared to individuals experiencing fluctuating temperatures.
Chronic exposure to stable temperature shortened the median life-

span of turquoise killifish despite the fact that fish in fluctuating tem-
peratures spend approximately a quarter of the day in temperatures
5–6 °C above the upper range of their preferred body temperatures (i.e.
30 °C (Žák et al., 2018)). Jensen's inequality, validated on stable tem-
peratures, postulates that organismal performance is disproportionally
more sensitive to warm temperatures than to low temperatures (Martin
and Huey, 2008). Thus, it is predicted that the upper limit would have a
disproportionately greater (i.e. lifespan-shortening) effect. Nonetheless
the effect of fluctuating temperature on life history traits appears to be
contingent upon the range of experimental temperatures and their
distance from optimal temperatures (Colinet et al., 2015; Kingsolver

Fig. 4. Growth of (a) females (p < 0.001, N=40) and (b) males (p=0.009, N=44) was higher in stable than in fluctuating temperature. The curves were fitted by
Gaussian Generalized Additive Models with specified treatment-specific smoothing factor. The lines represent means and shaded areas are 95% confidence intervals.
Empty circles at the bottom of plots represent time-points when body-size measurements were taken. Due to age-related dying (Fig. 2) sample size was decreasing
with age.

Fig. 5. Age-related patterns of (a) fecundity and (b) fertilization rate of females (N=35) kept in stable (blue) and fluctuating (orange) temperature. Fecundity
(corrected for body size) was analysed using negative-binomial Generalized additive model (GAM) and was higher in fluctuating temperature treatment (p=0.005).
The fertilization rate was fitted by binomial GAM and similar in both regimens (p=0.665). Circles represent mean values computed from raw data. Note that empty
circles do not necessarily follow the curve due to random factor effects and, for fecundity estimates, correction for body size. Due to age-related mortality (Fig. 2),
sample size was decreasing with age. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

J. Žák and M. Reichard Experimental Gerontology 140 (2020) 111073

5



et al., 2008). We fluctuated the temperature between 20 °C and 34 °C,
which reflects conditions commonly experienced by turquoise killifish
in the wild (Reichard et al., 2009; Žák et al., 2018). The length of time
the killifish experienced these temperatures was probably too short
and/or temperatures too close to the optimal range to have a detri-
mental effect on lifespan. Close proximity to optimal temperatures is
supported by the fact that the upper range of fluctuating temperatures
was 7 °C below the lethal critical thermal maximum for this species
(Philippe et al., 2018). Therefore, it is reasonable to suggest that tur-
quoise killifish possess efficient physiological mechanisms to cope with
temperatures 5–6 °C above the upper limit of their preferred body
temperatures.

The observed increase in lifespan in fluctuating temperature may
have been induced by a stress-protective response (Gems and Partridge,
2008; Judy et al., 2013; Sorensen et al., 2003). Thermal stress increases
production of reactive oxygen species and induces up-regulation of
heat-shock proteins (Hsps) (Banh et al., 2016; Podrabsky et al., 2008). It
is assumed that metabolism and oxygen consumption during the warm
phase of fluctuation is higher than at a similarly warm stable tem-
perature (Beauregard et al., 2013; Lyytikainen and Jobling, 1998;
Martin and Huey, 2008). This may induce mild stress in the form of
dietary restriction which may contribute to lifespan extension
(Schwartz et al., 2016). However, it is unlikely the case in our study, as
dietary restriction commonly reduces the fecundity (Vrtílek and
Reichard, 2015) while we observed relative increase in fecundity.
Higher metabolic rate in fluctuating temperature contributes to detri-
mental oxidative stress and hence accelerates functional senescence
(Banh et al., 2016; Kregel and Zhang, 2007). Hsps are a large group of
proteins with various effects on lifespan and life-history traits when up-
regulated (Lithgow, 1996; Sorensen et al., 2003). They are able to re-
pair protein damage induced by both thermal and oxidative stresses and
they are a candidate mechanism for why we observed longer lifespan in
fluctuating temperature (Lithgow, 1996; Sorensen et al., 2003). The
association of specific Hsp and lifespan in turquoise killifish is un-
known, but previous work on the Neotropical annual killifish Aus-
trofundulus limneus showed that fluctuating temperature up-regulated
small Hsps (Hsp22, Hsp27) while stable temperature conditions led to
the up-regulation of large Hsps (Hsp70, Hsp90) (Podrabsky and
Somero, 2004). We believe that it is reasonable to assume that up-
regulation of different Hsps may contribute to the observed difference
in lifespan between thermal regimes. Further, the activation of other
stress protective mechanisms such as progranulin pathway may also
play a role (Judy et al., 2013).

Fish in fluctuating temperature experienced slower growth and
reached smaller body size. The temperature-size rule postulates that, in
fish, oxygen supply is more important for anabolism than food supply
(Forster et al., 2012; Pauly, 1981) and oxygen availability for tissues is
lower at higher temperatures. Hence, fish experiencing warmer tem-
peratures reach smaller sizes, especially among tropical fish species
(Audzijonyte et al., 2020). We believe that the main mechanism behind
the smaller body size of fish in fluctuating temperature is the combi-
nation of periodic cold exposure and an increase in mandatory energy
consumption higher than the maximum metabolic rate during warm
periods, reducing the amount of available energy to growth (Gvoždík
and Kristín, 2017; Kingsolver and Gomulkiewicz, 2003; Lyytikainen
and Jobling, 1998). Alternatively, smaller asymptotic body size in
fluctuating temperatures could be explained by the cost of repairing
mechanisms (Sorensen et al., 2003) or by smaller cell size (Adrian et al.,
2016). Irrespective of the mechanism, fluctuating temperature con-
strained the maximum body size of turquoise killifish.

Slower growth rate is often associated with longer lifespan (Lee
et al., 2013). This relationship held for the gross contrast between
treatments, with fish in fluctuating temperature reaching smaller body
size and living longer. At the individual level, the same association was
demonstrated for males in the stable thermal regime, as reported in
previous studies (Baumgart et al., 2016; Kirschner et al., 2012).

However, the relationship did not hold for males in fluctuating tem-
perature, indicating that extended male lifespan in fluctuating tem-
perature is not causally linked to decreased growth rate or smaller body
size. This illustrates that the assumptions derived under stable tem-
peratures are of limited utility for predicting organismal performance
under ecologically relevant temperature fluctuations (Colinet et al.,
2015; Niehaus et al., 2012).

Females experiencing fluctuating temperature were more fecund,
relative to their body size. Even when fecundity was not corrected for
body size, their fecundity was similar to females at stable temperature
despite their smaller body size. Increased thermal fluctuation may be a
signal of water level decrease and thus induce higher investment to
current reproduction, as reported for N. wattersi under experimental
conditions (Grégoir et al., 2017). Surprisingly, Podrabsky et al. (2008)
found that fluctuating temperature had a negative (rather than positive)
effect on fecundity and fertilization rate in the Neotropical annual
killifish Austrofundulus limnaeus, despite the fact that A. limnaeus in the
wild experience fluctuating temperatures closely resembling the
thermal dynamics in ephemeral pools inhabited by the turquoise killi-
fish (Podrabsky et al., 1998; Žák et al., 2018). Inconsistent findings
between our study and that of Podrabsky et al. (2008) may be due to
the different range of temperatures used, the period for which fish were
subjected to fluctuating temperature (which was only 2months in
Podrabsky et al., 2008), the effect of different food rations (fish fed
twice per day in Podrabsky et al., 2008) or the different thermal re-
quirements of the two species.

The thermal regime did not affect patterns of reproductive senes-
cence in fecundity, fertilization rate or fertility despite the fact that
females in fluctuating temperature tended to have longer lifespans.
Across both treatments, females with higher fertilization rates lived
longer and early fecundity was not negatively associated with in-
dividual lifespan. Overall, there was positive relationship between fe-
male lifespan and lifetime fecundity in both thermal regimes (despite
slope of the relationship was thermal-regime specific) which indicates
that short-lived females did not compensate their fecundity to shorter
lifespan. This is in contrast to the trade-off assumptions of the dis-
posable soma theory of senescence (Kirkwood, 1977) which assume
that high investment in early reproduction has costly consequences
expressed later in life. In that respect, our data support the predictions
of positive pleiotropy where “good quality” individuals possess superior
fitness traits (at least in a given environment), including reproductive
outcome and survival (Maklakov et al., 2015).

Our findings demonstrate that the expression of life history traits
and their associations observed under stable temperature are a poor
representation of relationships arising in the fluctuating thermal con-
ditions of natural habitats. The lifespan of N. furzeri males was sig-
nificantly extended under fluctuating temperature and the same trend
was present in females. Females in fluctuating temperature had higher
fecundity, with no detrimental effects on reproductive senescence or
survival, suggesting a lack of allocation trade-offs or negative pleio-
tropy. Overall, our results have important consequences for future la-
boratory studies on functional and actuarial senescence, as most la-
boratory studies are conducted in stable experimental temperature.
Future studies should study the physiological and molecular mechan-
isms underlying lifespan and life history differences in N. furzeri ex-
posed to different thermal regimes.
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